4 research outputs found

    Deferred imitation and declarative memory in domestic dogs

    Get PDF
    This study demonstrates for the first time deferred imitation of novel actions in dogs (Canis familiaris) with retention intervals of 1.5 min and memory of familiar actions with intervals ranging from 0.40 to 10 min. Eight dogs were trained using the 'Do as I do' method to match their own behaviour to actions displayed by a human demonstrator. They were then trained to wait for a short interval to elapse before they were allowed to show the previously demonstrated action. The dogs were then tested for memory of the demonstrated behaviour in various conditions, also with the so-called two-action procedure and in a control condition without demonstration. Dogs were typically able to reproduce familiar actions after intervals as long as 10 min, even if distracted by different activities during the retention interval and were able to match their behaviour to the demonstration of a novel action after a delay of 1 min. In the two-action procedure, dogs were typically able to imitate the novel demonstrated behaviour after retention intervals of 1.5 min. The ability to encode and recall an action after a delay implies that facilitative processes cannot exhaustively explain the observed behavioural similarity and that dogs' imitative abilities are rather based on an enduring mental representation of the demonstration. Furthermore, the ability to imitate a novel action after a delay without previous practice suggests presence of declarative memory in dogs. © 2013 Springer-Verlag Berlin Heidelberg

    Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex

    No full text
    How neurons develop their morphology is an important question in neurobiology. Here we describe a new pathway that specifically affects the formation of basal dendrites and axonal projections in cortical pyramidal neurons. We report that thousand-and-one-amino acid 2 kinase (TAOK2), also known as TAO2, is essential for dendrite morphogenesis. TAOK2 downregulation impairs basal dendrite formation in vivo without affecting apical dendrites. Moreover, TAOK2 interacts with Neuropilin 1 (Nrp1), a receptor protein that binds the secreted guidance cue Semaphorin 3A (Sema3A). TAOK2 overexpression restores dendrite formation in cultured cortical neurons from Nrp1[superscript Sema−] mice, which express Nrp1 receptors incapable of binding Sema3A. TAOK2 overexpression also ameliorates the basal dendrite impairment resulting from Nrp1 downregulation in vivo. Finally, Sema3A and TAOK2 modulate the formation of basal dendrites through the activation of the c-Jun N-terminal kinase (JNK). These results delineate a pathway whereby Sema3A and Nrp1 transduce signals through TAOK2 and JNK to regulate basal dendrite development in cortical neurons.Simons FoundationMassachusetts Institute of Technology. Simons Center for the Social Brain (Postdoctoral Fellowship
    corecore