89 research outputs found
Wireless Sensor Network Modeling and Deployment Challenges in Oil and Gas Refinery Plants
Wireless sensor networks for critical industrial applications are becoming a remarkable technological paradigm. Large-scale adoption of the wireless connectivity in the field of industrial monitoring and process control is mandatorily paired with the development of tools for the prediction of the wireless link quality to mimic network planning procedures similar to conventional wired systems. In industrial sites, the radio signals are prone to blockage due to dense metallic structures. The layout of scattering objects from the existing infrastructure influences the received signal strength observed over the link and thus the quality of service (QoS). This paper surveys the most promising wireless technologies for industrial monitoring and control and proposes a novel channel model specifically tailored to predict the quality of the radio signals in environments affected by highly dense metallic building blockage. The propagation model is based on the diffraction theory, and it makes use of the 3D model of the plant to classify the links based on the number and density of the obstructions surrounding each individual radio device. Accurate link classification opens the way to the optimization of the network deployment to guarantee full end-to-end connectivity with minimal on-site redesign. The link-quality prediction method based on the classification of propagation conditions is validated by experimental measurements in two oil refinery sites using industry standard ISA SP100.11a compliant devices operating at 2.4 GHz
Leveraging MIMO-OFDM radio signals for device-free occupancy inference: system design and experiments
Abstract In device-free radio frequency (RF) body occupancy inference systems, RF signals encode information (e.g., body location, posture, activity) about moving targets (not instrumented) that alter the radio propagation in the surroundings of the RF link(s). Such systems are now getting more attention as they enable flexible location-based services for new smart scenarios (e.g., smart spaces, safety and security, assisted living) just using off-the-shelf wireless devices. The goal of this paper is to set the fundamental signal processing methods and tools for performance evaluation of passive occupancy inference problems that leverage on the analysis of physical layer (PHY) channel state information (CSI) obtained from multiple antennas (spatial domain) and carriers (frequency domain) jointly. To this aim, we consider here a multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) radio interface adopted in high-throughput WiFi networks such as IEEE 802.11n,ac. The proposed approach investigates at first relevant CSI features that are more sensitive to body presence; next, it proposes a space-frequency selection method based on principal component analysis (PCA). Considering an experimental case study with WiFi links, we show that the joint space- and frequency-domain processing of the radio signal quality indicators enable both detection and localization of two independent targets (i.e., human bodies) arbitrarily moving in the surroundings of the transmitter/receiver locations. Experiments are conducted using off-the-shelf WiFi devices configured to extract and process CSI over standard PHY preambles: performance analysis sets the best practices for system design and evaluation
Wireless home automation networks for indoor surveillance: technologies and experiments
The use of wireless technologies for critical surveillance and home automation introduces a number of opportunities as well as technological challenges. New emerging technologies give the opportunity to exploit the full potential of the internet of things paradigm by augmenting existing wired installations with smart wireless architectures. This work gives an overview of requirements, characteristics, and challenges of wireless home automation networks with special focus on intrusion detection systems. The proposed wireless network is based on several sensors that are deployed over a monitored area for detecting possible risky situations and triggering appropriate actions in response. The network needs to support critical traffic patterns with different characteristics and quality constraints. Namely, it should provide a periodic low-power monitoring service and, in case of intrusion detection, a real-time alarm propagation mechanism over inherently unreliable wireless links subject to fluctuations of the signal power. Following the guidelines introduced by recent standardization, this paper proposes the design of a wireless network prototype at 868 MHz which is able to satisfy the specifications of typical intrusion detection applications. A proprietary medium access control is developed based on the low-power SimpliciTI radio stack (Texas Instruments Incorporated, San Diego, CA, USA). Network performance is assessed by experimental measurements using a test-bed in an indoor office environment with severe multipath and nonline-of-sight propagation conditions. The measurement campaigns highlight the potential of the sub-GHz technology for cable replacing
Applications and case studies in oil refineries
The widespread adoption of wireless systems for industrial automation calls for the development of efficient tools for virtual planning of network deployments similarly as done for conventional Fieldbus and wired systems. In industrial sites the radio signal propagation is subject to blockage due to highly dense metallic structures. Network planning should therefore account for the number and the density of the 3D obstructions surrounding each link. In this paper we address the problem of wireless node deployment in wireless industrial networks, with special focus on WirelessHART IEC 62591 and ISA SP100 IEC 62734 standards. The goal is to optimize the network connectivity and develop an effective tool that can work in complex industrial sites characterized by severe obstructions. The proposed node deployment approach is validated through a case study in an oil refinery environment. It includes an ad-hoc simulation environment (RFSim tool) that implements the proposed network planning approach using 2D models of the plant, providing connectivity information based on user-defined deployment configurations. Simulation results obtained using the proposed simulation environment were validated by on-site measurements
A physics-informed generative model for passive radio-frequency sensing
Electromagnetic (EM) body models predict the impact of human presence and
motions on the Radio-Frequency (RF) stray radiation received by wireless
devices nearby. These wireless devices may be co-located members of a Wireless
Local Area Network (WLAN) or even cellular devices connected with a Wide Area
Network (WAN). Despite their accuracy, EM models are time-consuming methods
which prevent their adoption in strict real-time computational imaging problems
and Bayesian estimation, such as passive localization, RF tomography, and
holography. Physics-informed Generative Neural Network (GNN) models have
recently attracted a lot of attention thanks to their potential to reproduce a
process by incorporating relevant physical laws and constraints. Thus, GNNs can
be used to simulate/reconstruct missing samples, or learn physics-informed data
distributions. The paper discusses a Variational Auto-Encoder (VAE) technique
and its adaptations to incorporate a relevant EM body diffraction method with
applications to passive RF sensing and localization/tracking. The proposed
EM-informed generative model is verified against classical diffraction-based EM
body tools and validated on real RF measurements. Applications are also
introduced and discussed
- …