27,236 research outputs found

    Cosmological Baryon Sound Waves Coupled with the Primeval Radiation

    Get PDF
    The fluid equations for the baryon-electron system in an expanding universe are derived from the Boltzmann equation. The effect of the Compton interaction is taken into account properly in order to evaluate the photon-electron collisional term. As an application, the acoustic motions of the baryon-electron system after recombination are investigated. The effective adiabatic index γ\gamma is computed for sound waves of various wavelengths, assuming the perturbation amplitude is small. The oscillations are found to be dumped when γ\gamma changes from between 1 (for an isothermal process) to 5/3 (for an adiabatic process).Comment: 20 pages, Revtex, Accepted for publication in Phys. Rev.

    A human colonic crypt culture system to study regulation of stem cell-driven tissue renewal and physiological function

    Get PDF
    The intestinal epithelium is one of the most rapidly renewing tissues in the human body and fulfils vital physiological roles such as barrier function and transport of nutrients and fluid. Investigation of gut epithelial physiology in health and disease has been hampered by the lack of ex vivo models of the native human intestinal epithelium. Recently, remarkable progress has been made in defining intestinal stem cells and in generating intestinal organoid cultures. In parallel, we have developed a 3D culture system of the native human colonic epithelium that recapitulates the topological hierarchy of stem cell-driven tissue renewal and permits the physiological study of native polarized epithelial cells. Here we describe methods to establish 3D cultures of intact human colonic crypts and conduct real-time imaging of intestinal tissue renewal, cellular signalling, and physiological function, in conjunction with manipulation of gene expression by lentiviral or adenoviral transduction. Visualization of mRNA- and protein-expression patterns in cultured human colonic crypts, and cross-validation with crypts derived from fixed mucosal biopsies, is also described. Alongside studies using intestinal organoids, the near-native human colonic crypt culture model will help to bridge the gap that exists between investigation of colon cancer cell lines and/or animal (tissue) studies, and progression to clinical trials. To this end, the near native human colonic crypt model provides a platform to aid the development of novel strategies for the prevention of inflammatory bowel disease and cancer

    Spacetime Superalgebra in AdS_4 \times S^7 via Supermembrane Probe

    Get PDF
    The spacetime superalgebra via the supermembrane probe in the background of AdS_4 \times S^7 is discussed to the lowest order in the spinor coordinate \t. To obtain the correct spacetime superalgebras, all \t^2 order corrections for supervielbein and super 3-form gauge potential have to be included. The central extension of the superalgebra OSp(8|4) of the super isometries for AdS_4 \times S^7 is found.Comment: 8 pages, Latex, minor corrections, final version to appear in Phys. Rev.

    Evidence of Exponential Decay Emission in the Swift Gamma-ray Bursts

    Full text link
    We present a systematic study of the steep decay emission from gamma-ray bursts (GRBs) observed by the Swift X-Ray Telescope (XRT). In contrast to the analysis described in recent literature, we produce composite Burst Alert Telescope (BAT) and XRT light curves by extrapolating the XRT data (2-10 keV) into the BAT energy range (15-25 keV) rather than extrapolating the BAT data into the XRT energy band (0.3-10 keV). Based on the fits to the composite light curves, we have confirmed the existence of an exponential decay component which smoothly connects the BAT prompt data to the XRT steep decay for several GRBs. We also find that the XRT steep decay for some of the bursts can be well fit by a combination of a power-law with an exponential decay model. We discuss this exponential component within the frame work of both the internal and the external shock model.Comment: 33 pages, 34 figures; accepted for publication in Ap

    High Ratio of 44Ti/56Ni in Cas A and Axisymmetric Collapse-Driven Supernova Explosion

    Full text link
    The large abundance ratio of 44Ti/56Ni^{44}Ti/^{56}Ni in Cas A is puzzling. In fact, the ratio seems to be larger than the theoretical constraint derived by Woosley & Hoffman (1991). However, this constraint is obtained on the assumption that the explosion is spherically symmetric, whereas Cas A is famous for the asymmetric form of the remnant. Recently, Nagataki et al. (1997) calculated the explosive nucleosynthesis of axisymmetrically deformed collapse-driven supernova. They reported that the ratio of 44Ti/56Ni^{44}Ti/^{56}Ni was enhanced by the stronger alpha-rich freezeout in the polar region. In this paper, we apply these results to Cas A and examine whether this effect can explain the large amount of 44Ti^{44}Ti and the large ratio of 44Ti/56Ni^{44}Ti/^{56}Ni. We demonstrate that the conventional spherically symmetric explosion model can not explain the 44^{44}Ti mass produced in Cas A if its lifetime is shorter than \sim 80 years and the intervening space is transparent to the gamma-ray line from the decay of 44^{44}Ti. On the other hand, we show the axisymmetric explosion models can solve the problem. We expect the same effect from a three dimensionally asymmetric explosion, since the stronger alpha-rich freezeout will also occur in that case in the region where the larger energy is deposited.Comment: 10 pages, LaTeX text and 3 postscript figure

    Interaction and Localization of One-electron Orbitals in an Organic Molecule: Fictitious Parameter Analysis for Multi-physics Simulations

    Full text link
    We present a new methodology to analyze complicated multi-physics simulations by introducing a fictitious parameter. Using the method, we study quantum mechanical aspects of an organic molecule in water. The simulation is variationally constructed from the ab initio molecular orbital method and the classical statistical mechanics with the fictitious parameter representing the coupling strength between solute and solvent. We obtain a number of one-electron orbital energies of the solute molecule derived from the Hartree-Fock approximation, and eigenvalue-statistical analysis developed in the study of nonintegrable systems is applied to them. Based on the results, we analyze localization properties of the electronic wavefunctions under the influence of the solvent.Comment: 4 pages, 5 figures, the revised version will appear in J. Phys. Soc. Jpn. Vol.76 (No.1

    Phenomenological constraints on minimally coupled exotic lepton triplets

    Full text link
    By introducing a set of new triplet leptons (with nonzero hypercharge) that can Yukawa couple to their Standard Model counterparts, new sources of tree-level flavor changing currents are induced via mixing. In this work, we study some of the consequences of such new contributions on processes such as the leptonic decays of gauge bosons, 3\ell \rightarrow 3\ell' and γ\ell \rightarrow \ell' \gamma which violate lepton flavor, and mu-e conversion in atomic nuclei. Constraints are then placed on the parameters associated with the exotic triplets by invoking the current low-energy experimental data. Moreover, the new physics contribution to the lepton anomalous magnetic moments is calculated.Comment: 17 pages, 1 figure, 2 tables (REVTeX4.1); v2: refs added, to appear in PR

    Twin wall of cubic-tetragonal ferroelastics

    Full text link
    We derive solutions for the twin wall linking two tetragonal variants of the cubic-tetragonal ferroelastic transformation, including for the first time the dilatational and shear energies and strains. Our solutions satisfy the compatibility relations exactly and are obtained at all temperatures. They require four non-vanishing strains except at the Barsch-Krumhansl temperature TBK (where only the two deviatoric strains are needed). Between the critical temperature and TBK, material in the wall region is dilated, while below TBK it is compressed. In agreement with experiment and more general theory, the twin wall lies in a cubic 110-type plane. We obtain the wall energy numerically as a function of temperature and we derive a simple estimate which agrees well with these values.Comment: 4 pages (revtex), 3 figure

    Power-law inflation with a nonminimally coupled scalar field

    Get PDF
    We consider the dynamics of power-law inflation with a nonminimally coupled scalar field ϕ\phi. It is well known that multiple scalar fields with exponential potentials V(ϕ)=V0exp(16π/pmpl2ϕ)V(\phi)=V_0 {\rm exp}(-\sqrt{16\pi/p m_{\rm pl}^2} \phi) lead to an inflationary solution even if the each scalar field is not capable to sustain inflation. In this paper, we show that inflation can be assisted even in the one-field case by the effect of nonminimal coupling. When ξ\xi is positive, since an effective potential which arises by a conformal transformation becomes flatter compared with the case of ξ=0\xi=0 for ϕ>0\phi>0, we have an inflationary solution even when the universe evolves as non-inflationary in the minimally coupled case. For the negative ξ\xi, the assisted inflation can take place when ϕ\phi evolves in the region of ϕ<0\phi<0 \.Comment: 12 pages, 6 figures, to appear in Phys. Rev.
    corecore