32,054 research outputs found

    Influence of non-local exchange on RKKY interactions in III-V diluted magnetic semiconductors

    Full text link
    The RKKY interaction between substitutional Mn local moments in GaAs is both spin-direction-dependent and spatially anisotropic. In this Letter we address the strength of these anisotropies using a semi-phenomenological tight-binding model which treats the hybridization between Mn d-orbitals and As p-orbitals perturbatively and accounts realistically for the non-local exchange interaction between their spins. We show that exchange non-locality, valence-band spin-orbit coupling, and band-structure anisotropy all play a role in determining the strength of both effects. We use these results to estimate the degree of ground-state magnetization suppression due to frustrating interactions between randomly located Mn ions.Comment: 4 pages RevTeX, 2 figures included, v2: replacement because of font proble

    Electronic structures of Cr1δ_{1-\delta}X (X=S, Te) studied by Cr 2p soft x-ray magnetic circular dichroism

    Get PDF
    Cr 2p core excited XAS and XMCD spectra of ferromagnetic Cr1δ_{1-\delta}Te with several concentrations of δ\delta=0.11-0.33 and ferrimagnetic Cr5_{5}S6_{6} have been measured. The observed XMCD lineshapes are found to very weakly depend on δ\delta for Cr1δ_{1-\delta}Te. The experimental results are analyzed by means of a configuration-interaction cluster model calculation with consideration of hybridization and electron correlation effects. The obtained values of the spin magnetic moment by the cluster model analyses are in agreement with the results of the band structure calculation.The calculated result shows that the doped holes created by the Cr deficiency exist mainly in the Te 5porbital of Cr1δ_{1-\delta}Te, whereas the holes are likely to be in Cr 3d state for Cr5_{5}S6_{6}.Comment: 8 pages, 6 figures, accepted for publication in Physical Review

    Peculiar Velocities of Nonlinear Structure: Voids in McVittie Spacetime

    Get PDF
    As a study of peculiar velocities of nonlinear structure, we analyze the model of a relativistic thin-shell void in the expanding universe. (1) Adopting McVittie (MV) spacetime as a background universe, we investigate the dynamics of an uncompensated void with negative MV mass. Although the motion itself is quite different from that of a compensated void, as shown by Haines & Harris (1993), the present peculiar velocities are not affected by MV mass. (2) We discuss how precisely the formula in the linear perturbation theory applies to nonlinear relativistic voids, using the results in (1) as well as the previous results for the homogeneous background (Sakai, Maeda, & Sato 1993). (3) We re-examine the effect of the cosmic microwave background radiation. Contrary to the results of Pim & Lake (1986, 1988), we find that the effect is negligible. We show that their results are due to inappropriate initial conditions. Our results (1)-(3) suggest that the formula in the linear perturbation theory is approximately valid even for nonlinear voids.Comment: 12 pages, aastex, 4 ps figures separate, Fig.2 added, to appear in Ap

    On the density matrix for the kink ground state of higher spin XXZ chain

    Full text link
    The exact expression for the density matrix of the kink ground state of higher spin XXZ chain is obtained

    Complete homochirality induced by the nonlinear autocatalysis and recycling

    Full text link
    A nonlinear autocatalysis of a chiral substance is shown to achieve homochirality in a closed system, if the back-reaction is included. Asymmetry in the concentration of two enantiomers or the enantiometric excess increases due to the nonlinear autocatalysis. Furthermore, when the back-reaction is taken into account, the reactant supplied by the decomposition of the enantiomers is recycled to produce more and more the dominant one, and eventually the homochirality is established.Comment: 4 pages, 2 figure

    Real Space Renormalization Group Study of the S=1/2 XXZ Chains with Fibonacci Exchange Modulation

    Get PDF
    Ground state properties of the S=1/2 antiferromagnetic XXZ chain with Fibonacci exchange modulation are studied using the real space renormalization group method for strong modulation. The quantum dynamical critical behavior with a new universality class is predicted in the isotropic case. Combining our results with the weak coupling renormalization group results by Vidal et al., the ground state phase diagram is obtained.Comment: 9 pages, 9 figure

    Detecting individual gravity modes in the Sun: Chimera or reality?

    Full text link
    Over the past 15 years, our knowledge of the interior of the Sun has tremendously progressed by the use of helioseismic measurements. However, to go further in our understanding of the solar core, we need to measure gravity (g) modes. Thanks to the high quality of the Doppler-velocity signal measured by GOLF/SoHO, it has been possible to unveil the signature of the asymptotic properties of the solar g modes, thus obtaining a hint of the rotation rate in the core. However, the quest for the detection of individual g modes is not yet over. In this work, we apply the latest theoretical developments to guide our research using GOLF velocity time series. In contrary to what was thought till now, we are maybe starting to identify individual low-frequency g modes...Comment: Highlight of Astronomy (HoA) proceedings of the JD-11, IAU 2009. 2 pages, 1 figur

    Ultra-stable performance of an underground-based laser interferometer observatory for gravitational waves

    Full text link
    In order to detect the rare astrophysical events that generate gravitational wave (GW) radiation, sufficient stability is required for GW antennas to allow long-term observation. In practice, seismic excitation is one of the most common disturbances effecting stable operation of suspended-mirror laser interferometers. A straightforward means to allow more stable operation is therefore to locate the antenna, the ``observatory'', at a ``quiet'' site. A laser interferometer gravitational wave antenna with a baseline length of 20m (LISM) was developed at a site 1000m underground, near Kamioka, Japan. This project was a unique demonstration of a prototype laser interferometer for gravitational wave observation located underground. The extremely stable environment is the prime motivation for going underground. In this paper, the demonstrated ultra-stable operation of the interferometer and a well-maintained antenna sensitivity are reported.Comment: 8 pages, to appear on PR
    corecore