31,778 research outputs found

    Development of displacement- and frequency-noise-free interferometer in 3-D configuration for gravitational wave detection

    Get PDF
    The displacement- and frequency-noise-free interferometer (DFI) is a multiple laser interferometer array for gravitational wave detection free from both the displacement noise of optics and laser frequency noise. So far, partial experimental demonstrations of DFI have been done in 2-D table top experiments. In this paper, we report the complete demonstration of a 3-D DFI. The DFI consists of four Mach-Zehnder interferometers with four mirrors and two beamsplitters. The displacement noises both of mirrors and beamsplitters were suppressed by up to 40 dB. The non-vanishing DFI response to a gravitational wave was successfully confirmed using multiple electro-optic modulators and computing methods

    Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive

    Full text link
    Phase space can be constructed for NN equal and distinguishable subsystems that could be (probabilistically) either {\it weakly} (or {\it "locally"}) correlated (e.g., independent, i.e., uncorrelated), or {\it strongly} (or {\it globally}) correlated. If they are locally correlated, we expect the Boltzmann-Gibbs entropy SBGkipilnpiS_{BG} \equiv -k \sum_i p_i \ln p_i to be {\it extensive}, i.e., SBG(N)NS_{BG}(N)\propto N for NN \to\infty. In particular, if they are independent, SBGS_{BG} is {\it strictly additive}, i.e., SBG(N)=NSBG(1),NS_{BG}(N)=N S_{BG}(1), \forall N. However, if the subsystems are globally correlated, we expect, for a vast class of systems, the entropy Sqk[1ipiq]/(q1)S_q\equiv k [1- \sum_i p_i^q]/(q-1) (with S1=SBGS_1=S_{BG}) for some special value of q1q\ne1 to be the one which extensive (i.e., Sq(N)NS_q(N)\propto N for NN \to\infty).Comment: 15 pages, including 9 figures and 8 Tables. The new version is considerably enlarged with regard to the previous ones. New examples and new references have been include

    Interspecific differences in the larval performance of Pieris butterflies (Lepidoptera: Pieridae) are associated with differences in the glucosinolate profiles of host plants

    No full text
    The tremendous diversity of plants and herbivores has arisen from a coevolutionary relationship characterized by plant defense and herbivore counter adaptation. Pierid butterfly species feed on Brassicales plants that produce glucosinolates as a chemical deterrent against herbivory. In turn, the larvae of pierids have nitrile specifier proteins (NSPs) that are expressed in their gut and disarm glucosinolates. Pierid butterflies are known to have diversified in response to glucosinolate diversification in Brassicales. Therefore, each pierid species is expected to have a spectrum of host plants characterized by specific glucosinolate profiles. In this study, we tested whether the larval performance of different Pieris species, a genus in Pieridae (Lepidoptera: Pieridae), was associated with plant defense traits of putative host plants. We conducted feeding assays using larvae of three Pieris species and 10 species of the Brassicaceae family possessing different leaf physical traits and glucosinolate profile measurements. The larvae of Pieris rapae responded differently in the feeding assays compared with the other two Pieris species. This difference was associated with differences in glucosinolate profiles but not with variations in physical traits of the host plants. This result suggests that individual Pieris species are adapted to a subset of glucosinolate profiles within the Brassicaceae. Our results support the idea that the host ranges of Pieris species depend on larval responses to glucosinolate diversification in the host species, supporting the hypothesis of coevolution between butterflies and host plants mediated by the chemical arms race
    corecore