20,763 research outputs found

    Evaluation of specific heat for superfluid helium between 0 - 2.1 K based on nonlinear theory

    Get PDF
    The specific heat of liquid helium was calculated theoretically in the Landau theory. The results deviate from experimental data in the temperature region of 1.3 - 2.1 K. Many theorists subsequently improved the results of the Landau theory by applying temperature dependence of the elementary excitation energy. As well known, many-body system has a total energy of Galilean covariant form. Therefore, the total energy of liquid helium has a nonlinear form for the number distribution function. The function form can be determined using the excitation energy at zero temperature and the latent heat per helium atom at zero temperature. The nonlinear form produces new temperature dependence for the excitation energy from Bose condensate. We evaluate the specific heat using iteration method. The calculation results of the second iteration show good agreement with the experimental data in the temperature region of 0 - 2.1 K, where we have only used the elementary excitation energy at 1.1 K.Comment: 6 pages, 3 figures, submitted to Journal of Physics: Conference Serie

    A General Analytic Formula for the Spectral Index of the Density Perturbations produced during Inflation

    Full text link
    The standard calculation of the spectrum of density perturbations produced during inflation assumes that there is only one real dynamical degree of freedom during inflation. However, there is no reason to believe that this is actually the case. In this paper we derive general analytic formulae for the spectrum and spectral index of the density perturbations produced during inflation.Comment: 10 pages, more explanation and references added, version to be published in Progress of Theoretical Physic
    corecore