3,888 research outputs found

    Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Full text link
    Interacting fermions on a lattice can develop strong quantum correlations, which lie at the heart of the classical intractability of many exotic phases of matter. Seminal efforts are underway in the control of artificial quantum systems, that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical pure-state initialisation and readily adhere to an engineerable Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder inherent to solid state has made attempts at emulating Fermi-Hubbard physics on solid-state platforms few and far between. Here, we show that for gate-defined quantum dots, this disorder can be suppressed in a controlled manner. Novel insights and a newly developed semi-automated and scalable toolbox allow us to homogeneously and independently dial in the electron filling and nearest-neighbour tunnel coupling. Bringing these ideas and tools to fruition, we realize the first detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here show how quantum dots can be used to investigate the physics of ever more complex many-body states

    Estimates of electronic interaction parameters for LaMMO3_3 compounds (MM=Ti-Ni) from ab-initio approaches

    Full text link
    We have analyzed the ab-initio local density approximation band structure calculations for the family of perovskite oxides, LaMMO3_3 with MM=Ti-Ni within a parametrized nearest neighbor tight-binding model and extracted various interaction strengths. We study the systematics in these interaction parameters across the transition metal series and discuss the relevance of these in a many-body description of these oxides. The results obtained here compare well with estimates of these parameters obtained via analysis of electron spectroscopic results in conjunction with the Anderson impurity model. The dependence of the hopping interaction strength, t, is found to be approximately r3r^{-3}.Comment: 18 pages; 1 tex file+9 postscript files (appeared in Phys Rev B Oct 15,1996

    Dissipationless transport in low density bilayer systems

    Full text link
    In a bilayer electronic system the layer index may be viewed as the z-component of an isospin-1/2. An XY isospin-ordered ferromagnetic phase was observed in quantum Hall systems and is predicted to exist at zero magnetic field at low density. This phase is a superfluid for opposite currents in the two layers. At B=0 the system is gapless but superfluidity is not destroyed by weak disorder. In the quantum Hall case, weak disorder generates a random gauge field which probably does not destroy superfluidity. Experimental signatures include Coulomb drag and collective mode measurements.Comment: 4 pages, no figures, submitted to Phys. Rev. Let

    Variation in oil and its major constituents due to season and stage of the crop in Java citronella (Cymhopogon winterianus Jowitt.)

    Get PDF
    Variations in citronella oil and its major constituents due to seasonal changes and stage of the crop were studied for three years under the climatic conditions of Jorhat, Assam. Rainfall, temperature .. sunshine and relative humidity have cumulative effect on the oil yield and its major constituents namely, citronellal, citronellol and geraniol. Post monsoon months were seemed to be favourable, contributing higher oil yield. Citronellal content was higher during September (44.3%) and October (45.7%). It was observed that light rainfall (100 to 200 mm), moderate temperature (20-30oC), sunshine hours of 5 to 6 hours and high humidity (90-95%) wet:e the favourable meteorological ,parameters for higher oil yield and citronellal content in citronella oiL Growing period or stage of crop growth also had profound effect on the oil yield and citronellal content. Older crop with highly matured leaves found to yield higher oil and less citronella!. Alcohol content in citronella oil was not affected by seasonal variation. However, total alcohol percentage was found to reduce, while aldehyde percentage increased. &nbsp

    Summarizing and measuring development activity

    Get PDF
    Software developers pursue a wide range of activities as part of their work, and making sense of what they did in a given time frame is far from trivial as evidenced by the large number of awareness and coordination tools that have been developed in recent years. To inform tool design for making sense of the information available about a developer's activity, we conducted an empirical study with 156 GitHub users to investigate what information they would expect in a summary of development activity, how they would measure development activity, and what factors in uence how such activity can be condensed into textual summaries or numbers. We found that unexpected events are as important as expected events in summaries of what a developer did, and that many developers do not believe in measuring development activity. Among the factors that in uence summarization and measurement of development activity, we identified development experience and programming languages.Christoph Treude, Fernando Figueira Filho, Uirá Kulesz

    Disorder and Interaction in 2D: Exact diagonalization study of the Anderson-Hubbard-Mott model

    Full text link
    We investigate, by numerically calculating the charge stiffness, the effects of random diagonal disorder and electron-electron interaction on the nature of the ground state in the 2D Hubbard model through the finite size exact diagonalization technique. By comparing with the corresponding 1D Hubbard model results and by using heuristic arguments we conclude that it is \QTR{it}{unlikely} that there is a 2D metal-insulator quantum phase transition although the effect of interaction in some range of parameters is to substantially enhance the non-interacting charge stiffness.Comment: 13 pages, 2 figures Revised version. Accepted for publication in Phys. Rev. Let

    Inelastic lifetimes of confined two-component electron systems in semiconductor quantum wire and quantum well structures

    Full text link
    We calculate Coulomb scattering lifetimes of electrons in two-subband quantum wires and in double-layer quantum wells by obtaining the quasiparticle self-energy within the framework of the random-phase approximation for the dynamical dielectric function. We show that, in contrast to a single-subband quantum wire, the scattering rate in a two-subband quantum wire contains contributions from both particle-hole excitations and plasmon excitations. For double-layer quantum well structures, we examine individual contributions to the scattering rate from quasiparticle as well as acoustic and optical plasmon excitations at different electron densities and layer separations. We find that the acoustic plasmon contribution in the two-component electron system does not introduce any qualitatively new correction to the low energy inelastic lifetime, and, in particular, does not produce the linear energy dependence of carrier scattering rate as observed in the normal state of high-TcT_c superconductors.Comment: 16 pages, RevTeX, 7 figures. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Manifestation of the magnetic depopulation of one-dimensional subbands in the optical absorption of acoustic magnetoplasmons in side-gated quantum wires

    Full text link
    We have investigated experimentally and theoretically the far-infrared (FIR) absorption of gated, deep-mesa-etched GaAs/Alx_xGa1x_{1-x}As quantum wires. To overcome Kohn's theorem we have in particular prepared double-layered wires and studied the acoustic magnetoplasmon branch. We find oscillations in the magnetic-field dispersion of the acoustic plasmon which are traced back to the self-consistently screened density profile in its dependence on the magnetic depopulation of the one-dimensional subbands.Comment: LaTeX-file, 4 pages with 3 included ps-figures, to appear in Physica
    corecore