85 research outputs found
DESIGN OF DISSOLUTION STUDY PROTOCOL FOR PULMONARY DOSAGE FORMS: CRITERIA FOR SELECTION OF BIO-RELEVANT DISSOLUTION MEDIUM
Pulmonary dosage forms constitute an important route of drug delivery for systemic absorption of drugs in management of respiratory diseases as well as diseases such as diabetes, migraine, osteoporosis, and cancer. Performance of different pulmonary dosage forms is greatly influenced by aerodynamic particle size distribution of inhalable particles, spray pattern, fraction of dose actually deposited on pulmonary epithelium, dissolution of active pharmaceutical ingredient and ultimately absorption across pulmonary barriers. In vitro dissolution study should be designed to predict in vivo performance precisely, providing key information on bioavailability and establishing in vitro-in vivo correlation. To obtain meaningful data from dissolution study, focus should be on composition of dissolution medium, dissolution conditions and dissolution test apparatus. For pulmonary dosage forms, selection of physiologically relevant dissolution medium, mimicking lung fluid (LF) is a challenging task. Attempts are being made to develop bio-relevant dissolution medium to overcome the limitations associated with use of conventional media lacking lung surfactant proteins, or several salts normally present in pleural fluid. Use of simulated LFs can give a better understanding of the release mechanisms and possible in vivo behavior of pulmonary dosage forms thereby enhancing the predictive capability of the dissolution testing. In the review, efforts have been taken to provide comprehensive information on composition, physicochemical characteristics and functions of physiological LF, challenges associated with the design and development of dissolution study protocol for pulmonary dosage forms, criteria for selection of an appropriate bio-relevant dissolution medium, comparative study on various reported bio-relevant dissolution media and dissolution apparatuses employed for in vitro characterization of performance of pulmonary dosage forms
Prediction of the aerodynamic behavior of a rounded corner square cylinder at zero incidence using ANN
AbstractThe aerodynamic behavior of a square cylinder with rounded corner edges in steady flow regime in the range of Reynolds number (Re) 5β45; is predicted by Artificial Neural Network (ANN) using MATLAB. The ANN has trained by back propagation algorithm. The ANN requires input and output data to train the network, which is obtained from the commercial Computational Fluid Dynamics (CFD) software FLUENT in the present study. In FLUENT, all the governing equations are discretized by the finite volume method. Results from numerical simulation and back propagation based ANN have been compared. It has been discovered that the ANN predicts the aerodynamic behavior correctly within the given range of the training data. It is additionally observed that back propagation based ANN is an effective tool to forecast the aerodynamic behavior than simulation, that has very much longer computational time
IN VITRO EVALUATION OF ANTHELMINTIC ACTIVITY OF AQUEOUS EXTRACT OF ARDISIA COLORATA ROXB. LEAVES IN ADULT EARTHWORMS
Objective: The study aims to evaluate the anthelmintic activity of aqueous extract of Ardisia colorata Roxb. leaves (AQEAC) using adult earthworms (Pheretima posthuman).
Methods: The total of 24 adult earthworms were divided into four groups, with six worms in each group (n=6). The anthelmintic activity of AQEAC at two different doses (25 mg/ml and 50 mg/ml) was evaluated by assessing the time of paralysis (min) and time of death (min) of the earthworms. Albendazole (25 mg/ml) was used as standard and 2% gum acacia as control.
Results: The result showed that AQEAChad significant anthelmintic activity (p<0.001) in a dose-dependent manner but was less potent than the standard drug albendazole.
Conclusion: AQEAC demonstrated significant anthelmintic activity but was less potent than the standard drug albendazole. However, further studies with higher doses are required to evaluate the dose-dependent activity and to evaluate the exact mechanism responsible for anthelmintic activity
Quantitative Top-Down Proteomics of SILAC Labeled Human Embryonic Stem Cells
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells with relevance to treatment of numerous medical conditions. However, a global understanding of the role of the hESC proteome in maintaining pluripotency or triggering differentiation is still largely lacking. The emergence of top-down proteomics has facilitated the identification and characterization of intact protein forms that are not readily apparent in bottom-up studies. Combined with metabolic labeling techniques such as stable isotope labeling by amino acids in cell culture (SILAC), quantitative comparison of intact protein expression under differing experimental conditions is possible. Herein, quantitative top-down proteomics of hESCs is demonstrated using the SILAC method and nano-flow reverse phase chromatography directly coupled to a linear-ion-trap Fourier transform ion cyclotron resonance mass spectrometer (nLC-LTQ-FT-ICR-MS). In this study, which to the best of our knowledge represents the first top-down analysis of hESCs, we have confidently identified 11 proteins by accurate intact mass, MS/MS, and amino acid counting facilitated by SILAC labeling. Although quantification is challenging due to the incorporation of multiple labeled amino acids (i.e., lysine and arginine) and arginine to proline conversion, we are able to quantitatively account for these phenomena using a mathematical model
COUNTABLE COMPACTNESS MODULO AN IDEAL OF NATURAL NUMBERS
In this article, we introduce the idea of -compactness as a covering property through ideals of and regardless of the -convergent sequences ofΒ points. The frameworks of -compactness, compactness and sequential compactness are compared to the structure of -compact space. We began our research by looking at some fundamental characteristics, such as the nature of a subspace of an -compact space, then investigated its attributes in regular and separable space. Finally, various features resembling finite intersection property have been investigated, and a connection between -compactness and sequential -compactness has been established
Amelioration of galactosamine-induced nephrotoxicity by a protein isolated from the leaves of the herb, Cajanus indicus L
<p>Abstract</p> <p>Background</p> <p>Galactosamine (GalN), an established experimental toxin, mainly causes liver injury via the generation of free radicals and depletion of UTP nucleotides. Renal failure is often associated with end stage liver damage. GalN intoxication also induces renal dysfunction in connection with hepatic disorders. Present study was designed to find out the effect of a protein isolated from the leaves of the herb <it>Cajanus indicus </it>against GalN induced renal damage.</p> <p>Methods</p> <p>Both preventive as well as curative effect of the protein was investigated in the study. GalN was administered intraperitoneally at a dose of 800 mg/kg body weight for 3 days pre and post to protein treatment at an intraperitoneal dose of 2 mg/kg body weight for 4 days. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST), levels of cellular metabolites, reduced glutathione (GSH), total thiols, oxidized glutathione (GSSG) and lipid peroxidation end products were determined to estimate the status of the antioxidative defense system. In addition, serum creatinine and urea nitrogen (UN) levels were also measured as a marker of nephrotoxicity.</p> <p>Results</p> <p>Results showed that GalN treatment significantly increased the serum creatinine and UN levels compared to the normal group of mice. The extent of lipid peroxidation and the level of GSSG were also enhanced by the GalN intoxication whereas the activities of antioxidant enzymes SOD, CAT, GR and GST as well as the levels of total thiols and GSH were decreased in the kidney tissue homogenates. Protein treatment both prior and post to the toxin administration successfully altered the effects in the experimental mice.</p> <p>Conclusion</p> <p>Our study revealed that GalN caused a severe oxidative insult in the kidney. Protein treatment both pre and post to the GalN intoxication could protect the kidney tissue against GalN induced oxidative stress. As GalN induced severe hepatotoxicity followed by renal failure, the protective role of the protein against GalN induced renal damages is likely to be an indirect effect. Since the protein possess hepatoprotective activity, it may first ameliorate GalN-induced liver damage and consequently the renal disorders are reduced. To the best of our knowledge, this is probably the first report describing GalN-induced oxidative stress in renal damages and the protective role of a plant protein molecule against it.</p
Aqueous extract of Terminalia arjuna prevents carbon tetrachloride induced hepatic and renal disorders
BACKGROUND: Carbon tetrachloride (CCl(4)) is a well-known hepatotoxin and exposure to this chemical is known to induce oxidative stress and causes liver injury by the formation of free radicals. Acute and chronic renal damage are also very common pathophysiologic disturbances caused by CCl(4). The present study has been conducted to evaluate the protective role of the aqueous extract of the bark of Termnalia arjuna (TA), an important Indian medicinal plant widely used in the preparation of ayurvedic formulations, on CCl(4 )induced oxidative stress and resultant dysfunction in the livers and kidneys of mice. METHODS: Animals were pretreated with the aqueous extract of TA (50 mg/kg body weight) for one week and then challenged with CCl(4 )(1 ml/kg body weight) in liquid paraffin (1:1, v/v) for 2 days. Serum marker enzymes, namely, glutamate pyruvate transaminase (GPT) and alkaline phosphatase (ALP) were estimated in the sera of all study groups. Antioxidant status in both the liver and kidney tissues were estimated by determining the activities of the antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST); as well as by determining the levels of thiobarbutaric acid reactive substances (TBARS) and reduced glutathione (GSH). In addition, free radical scavenging activity of the extract was determined from its DPPH radical quenching ability. RESULTS: Results showed that CCl(4 )caused a marked rise in serum levels of GPT and ALP. TBARS level was also increased significantly whereas GSH, SOD, CAT and GST levels were decreased in the liver and kidney tissue homogenates of CCl(4 )treated mice. Aqueous extract of TA successfully prevented the alterations of these effects in the experimental animals. Data also showed that the extract possessed strong free radical scavenging activity comparable to that of vitamin C. CONCLUSION: Our study demonstrated that the aqueous extract of the bark of TA could protect the liver and kidney tissues against CCl(4)-induced oxidative stress probably by increasing antioxidative defense activities
Protective Role of Taurine against Arsenic-Induced Mitochondria-Dependent Hepatic Apoptosis via the Inhibition of PKCΞ΄-JNK Pathway
BACKGROUND: Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. METHODOLOGY/PRINCIPAL FINDINGS: Rats were exposed to NaAsO(2) (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO(2) (10 microM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCdelta and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCdelta is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO(2) exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis. CONCLUSIONS/SIGNIFICANCE: Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCdelta-JNK signalling pathways. Therefore taurine supplementation could provide a new approach for the reduction of hepatic complication due to arsenic poisoning
Recommended from our members
Hint-based cooperative caching
This dissertation focuses on caching in distributed file systems, where the performance is constrained by expensive server accesses. This has led to the evolution of cooperative caching, an innovative technique which effectively utilizes the client memories in a distributed file system to reduce the impact of server accesses. This is achieved by adding another layer to the storage hierarchy called the cooperative cache, allowing clients to access and store file blocks in the caches of other clients. The major contribution of this dissertation is to show that a cooperative caching system that relies on local hints to manage the cooperative cache performs better than a more tightly coordinated fact-based system. To evaluate the performance of hint-based cooperative caching, trace-driven simulations are used to show that the hit ratios to the different layers of the storage hierarchy are as good as those of the existing tightly-coordinated algorithms, but with significantly reduced overhead. Following this, a prototype was implemented on a cluster of Linux machines, where the use of hints reduced the average block access time to almost half that of NFS, and incurred minimal overhead
- β¦