35 research outputs found

    Localisation of NMU1R and NMU2R in human and rat central nervous system and effects of neuromedin-U following central administration in rats

    Get PDF
    Rationale: Neuromedin-U (NmU) is an agonist at NMU1R and NMU2R. The brain distribution of NmU and its receptors, in particular NMU2R, suggests widespread central roles for NmU. In agreement, centrally administered NmU affects feeding behaviour, energy expenditure and pituitary output. Further central nervous system (CNS) roles for NmU warrant investigation. Objectives: To investigate the CNS role of NmU by mapping NMU1R and NMU2R mRNA and measuring the behavioural, endocrine, neurochemical and c-fos response to intracerebroventricular (i.c.v.) NmU. Methods: Binding affinity and functional potency of rat NmU was determined at human NMU1R and NMU2R. Expression of NMU1R and NMU2R mRNA in rat and human tissue was determined using semi-quantitative reverse-transcription polymerase chain reaction. In in-vivo studies, NmU was administered i.c.v. to male Sprague-Dawley rats, and changes in grooming, motor activity and pre-pulse inhibition (PPI) were assessed. In further studies, plasma endocrine hormones, [DOPAC + HVA]/[dopamine] and [5-HIAA]/[5-HT] ratios and levels of Fos-like immunoreactivity (FLI) were measured 20 min post-NmU (i.c.v.). Results: NmU bound to NMU1R (KI, 0.11±0.02 nM) and NMU2R (KI, 0.21±0.05 nM) with equal affinity and was equally active at NMU1R (EC50, 1.25±0.05 nM) and NMU2R (EC50, 1.10±0.20 nM) in a functional assay. NMU2R mRNA expression was found at the highest levels in the CNS regions of both rat and human tissues. NMU1R mRNA expression was restricted to the periphery of both species with the exception of the rat amygdala. NmU caused a marked increase in grooming and motor activity but did not affect PPI. Further, NmU decreased plasma prolactin but did not affect levels of corticosterone, luteinising hormone or thyroid stimulating hormone. NmU elevated levels of 5-HT in the frontal cortex and hypothalamus, with decreased levels of its metabolites in the hippocampus and hypothalamus, but did not affect dopamine function. NmU markedly increased FLI in the nucleus accumbens, frontal cortex and central amygdala. Conclusions: These data provide further evidence for widespread roles for NmU and its receptors in the brain

    β-Catenin is involved in alterations in mitochondrial activity in non-transformed intestinal epithelial and colon cancer cells

    Get PDF
    BACKGROUND: Alteration in respiratory activity and mitochondrial DNA (mtDNA) transcription seems to be an important feature of cancer cells. Leukotriene D(4) (LTD(4)) is a proinflammatory mediator implicated in the pathology of chronic inflammation and cancer. We have shown earlier that LTD(4) causes translocation of beta-catenin both to the mitochondria, in which it associates with the survival protein Bcl-2 identifying a novel role for beta-catenin in cell survival, and to the nucleus in which it activates the TCF/LEF transcription machinery. METHODS: Here we have used non-transformed intestinal epithelial Int 407 cells and Caco-2 colon cancer cells, transfected or not with wild type and mutated (S33Y) beta-catenin to analyse its effect on mitochondria activity. We have measured the ATP/ADP ratio, and transcription of the mtDNA genes ND2, ND6 and 16 s in these cells stimulated or not with LTD(4). RESULTS: We have shown for the first time that LTD(4) triggers a cellular increase in NADPH dehydrogenase activity and ATP/ADP ratio. In addition, LTD(4) significantly increased the transcription of mtDNA genes. Overexpression of wild-type beta-catenin or a constitutively active beta-catenin mutant mimicked the effect of LTD(4) on ATP/ADP ratio and mtDNA transcription. These elevations in mitochondrial activity resulted in increased reactive oxygen species levels and subsequent activations of the p65 subunit of NF-kappaB. CONCLUSIONS: The present novel data show that LTD(4), presumably through beta-catenin accumulation in the mitochondria, affects mitochondrial activity, lending further credence to the idea that inflammatory signalling pathways are intrinsically linked with potential oncogenic signals

    The obesity and inflammatory marker haptoglobin attracts monocytes via interaction with chemokine (C-C motif) receptor 2 (CCR2)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a chronic low inflammatory state. In the obesity condition the white adipose tissue (WAT) is massively infiltrated with monocytes/macrophages, and the nature of the signals recruiting these inflammatory cells has yet to be fully elucidated. Haptoglobin (Hp) is an inflammatory marker and its expression is induced in the WAT of obese subjects. In an effort to elucidate the biological significance of Hp presence in the WAT and of its upregulation in obesity we formulated the hypothesis that Hp may serve as a macrophage chemoattractant.</p> <p>Results</p> <p>We demonstrated by chemotaxis assay that Hp is able to attract chemokine (C-C motif) receptor 2 (CCR2)-transfected pre-B lymphocytes and monocytes in a dose-dependent manner. Moreover, Hp-mediated migration of monocytes is impaired by CCR2-specific inhibition or previous cell exposure to monocyte chemoattractant protein 1 (MCP1) (also known as CCR2 ligand or chemokine (C-C motif) ligand 2 (CCL2)). Downstream effects of Hp/CCR2 interaction were also investigated: flow cytometry proved that monocytes treated with Hp show reduced CCR2 expression on their surface; Hp interaction induces calcium release that is reduced upon pretreatment with CCR2 antagonist; extracellular signal-regulated kinase (ERK)1/2, a signal transducer activated by CCR2, is phosphorylated following Hp treatment and this phosphorylation is reduced when cells are pretreated with a specific CCR2 inhibitor. Consistently, blocking the ERK1/2 pathway with U0126, the selective inhibitor of the ERK upstream mitogen-activated protein (MAP)-ERK kinase (MEK), results in a dramatic reduction (by almost 100%) of the capability of Hp to induce monocyte migration.</p> <p>Conclusions</p> <p>Our data show that Hp is a novel monocyte chemoattractant and that its chemotactic potential is mediated, at least in part. by its interaction with CCR2.</p

    Differential Inhibitory Effects of CysLT1 Receptor Antagonists on P2Y6 Receptor-Mediated Signaling and Ion Transport in Human Bronchial Epithelia

    Get PDF
    BACKGROUND: Cysteinyl leukotriene (CysLT) is one of the proinflammatory mediators released by the bronchi during inflammation. CysLTs exert their biological effects via specific G-protein-coupled receptors. CysLT(1) receptor antagonists are available for clinical use for the treatment of asthma. Recently, crosstalk between CysLT(1) and P2Y(6) receptors has been delineated. P2Y receptors are expressed in apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Previous research suggests that CysLT(1) receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. However, the detailed molecular mechanism underlying the inhibition remains unresolved. METHODOLOGY/PRINCIPAL FINDINGS: In this study, western blot analysis confirmed that both CysLT(1) and P2Y(6) receptors were expressed in the human bronchial epithelial cell line 16HBE14o-. All three CysLT(1) antagonists inhibited the uridine diphosphate (UDP)-evoked I(SC), but only montelukast inhibited the UDP-evoked [Ca(2+)](i) increase. In the presence of forskolin or 8-bromoadenosine 3'5' cyclic monophosphate (8-Br-cAMP), the UDP-induced I(SC) was potentiated but was reduced by pranlukast and zafirlukast but not montelukast. Pranlukast inhibited the UDP-evoked I(SC) potentiated by an Epac activator, 8-(4-Chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2'-O-Me-cAMP), while montelukast and zafirlukast had no such effect. Pranlukast inhibited the real-time increase in cAMP changes activated by 8-CPT-2'-O-Me-cAMP as monitored by fluorescence resonance energy transfer imaging. Zafirlukast inhibited the UDP-induced I(SC) potentiated by N(6)-Phenyladenosine-3',5'-cyclic monophosphorothioate, Sp-isomer (Sp-6-Phe-cAMP; a PKA activator) and UDP-activated PKA activity. CONCLUSIONS/SIGNIFICANCE: In summary, our data strongly suggest for the first time that in human airway epithelia, the three specific CysLT(1) receptor antagonists exert differential inhibitory effects on P2Y(6) receptor-coupled Ca(2+) signaling pathways and the potentiating effect on I(SC) mediated by cAMP and Epac, leading to the modulation of ion transport activities across the epithelia
    corecore