38 research outputs found
Thalamic nuclei segmentation from T-weighted MRI: unifying and benchmarking state-of-the-art methods with young and old cohorts
The thalamus and its constituent nuclei are critical for a broad range of
cognitive and sensorimotor processes, and implicated in many neurological and
neurodegenerative conditions. However, the functional involvement and
specificity of thalamic nuclei in human neuroimaging is underappreciated and
not well studied due, in part, to technical challenges of accurately
identifying and segmenting nuclei. This challenge is further exacerbated by a
lack of common nomenclature for comparing segmentation methods. Here, we use
data from healthy young (Human Connectome Project, 100 subjects) and older
healthy adults, plus those with minor cognitive impairment and Alzheimers
disease (Alzheimers Disease Neuroimaging Initiative, 540 subjects), to
benchmark four state of the art thalamic segmentation methods for T1 MRI
(FreeSurfer, HIPS-THOMAS, SCS-CNN, and T1-THOMAS) under a single segmentation
framework. Segmentations were compared using overlap and dissimilarity metrics
to the Morel stereotaxic atlas. We also quantified each methods estimation
of thalamic nuclear degeneration across Alzheimers disease progression, and
how accurately early and late mild cognitive impairment, and Alzheimers disease
could be distinguished from healthy controls. We show that HIPS-THOMAS produced
the most effective segmentations of individual thalamic nuclei and was also
most accurate in discriminating healthy controls from those with mild cognitive
impairment and Alzheimers disease using individual nucleus volumes. This
work is the first to systematically compare the efficacy of anatomical thalamic
segmentation approaches under a unified nomenclature. We also provide
recommendations of which segmentation method to use for studying the functional
relevance of specific thalamic nuclei, based on their overlap and dissimilarity
with the Morel atlas.Comment: 10 figures, 4 tables, 3 supplemental figures, 2 supplemental table
Case Report: Nocturnal Low-Frequency Stimulation of the Centromedian Thalamic Nucleus Improves Sleep Quality and Seizure Control
Sleep disturbances and drug-resistant seizures significantly impact people with idiopathic generalized epilepsy (IGE). Thalamic deep brain stimulation (DBS) offers potential treatment, but its effect on sleep and seizure control needs clarification. In this study, we combined wearable sleep monitoring with electroencephalogram (EEG) confirmation to investigate the impact of nocturnal centromedian nucleus (CM) DBS parameters in a patient with drug-resistant IGE. We found that high-frequency (125 Hz) CM stimulation during sleep severely disrupted sleep macro architecture and exacerbated seizures. Conversely, switching to low-frequency (10 Hz) stimulation enhanced both sleep quality and seizure control. This study underscores the critical need to personalize DBS settings, tailoring them to individual patients\u27 sleep patterns to maximize therapeutic benefits. While larger-scale trials are needed, our findings pave the way for patient-centric approaches to thalamic neuromodulation, offering a transformative path to improve treatment outcomes and quality of life for those with refractory epilepsy
How recent learning shapes the brain: Memory-dependent functional reconfiguration of brain circuits
The process of storing recently encoded episodic mnestic traces so that they are available for subsequent retrieval is accompanied by specific brain functional connectivity (FC) changes. In this fMRI study, we examined the early processing of memories in twenty-eight healthy participants performing an episodic memory task interposed between two resting state sessions. Memory performance was assessed through a forced-choice recognition test after the scanning sessions. We investigated resting state system configuration changes via Independent Component Analysis by cross-modeling baseline resting state spatial maps onto the post-encoding resting state, and post-encoding resting state spatial maps onto baseline. We identified both persistent and plastic components of the overall brain functional configuration between baseline and post-encoding. While FC patterns within executive, default mode, and cerebellar circuits persisted from baseline to post-encoding, FC within the visual circuit changed. A significant session × performance interaction characterized medial temporal lobe and prefrontal cortex FC with the visual circuit, as well as thalamic FC within the executive control system. Findings reveal early-stage FC changes at the system-level subsequent to a learning experience and associated with inter-individual variation in memory performance
Pulvinar Neuromodulation for Seizure Monitoring and Network Modulation in Temporal Plus Epilepsy
Deep brain stimulation (DBS) is a promising treatment for drug-refractory epilepsies (DRE) when targeting the anterior nuclei of thalamus (ANT). However, targeting other thalamic nuclei, such as the pulvinar, shows therapeutic promise. Our pioneering case study presents the application of ambulatory seizure monitoring using spectral fingerprinting (12.15-17.15 Hz) recorded through Medtronic Percept DBS implanted bilaterally in the medial pulvinar thalami. This technology offers unprecedented opportunities for real-time monitoring of seizure burden and thalamocortical network modulation for effective seizure reduction in patients with bilateral mesial temporal and temporal plus epilepsies that are not suitable for resection
Case report: Nocturnal low-frequency stimulation of the centromedian thalamic nucleus improves sleep quality and seizure control
Sleep disturbances and drug-resistant seizures significantly impact people with idiopathic generalized epilepsy (IGE). Thalamic deep brain stimulation (DBS) offers potential treatment, but its effect on sleep and seizure control needs clarification. In this study, we combined wearable sleep monitoring with electroencephalogram (EEG) confirmation to investigate the impact of nocturnal centromedian nucleus (CM) DBS parameters in a patient with drug-resistant IGE. We found that high-frequency (125 Hz) CM stimulation during sleep severely disrupted sleep macro architecture and exacerbated seizures. Conversely, switching to low-frequency (10 Hz) stimulation enhanced both sleep quality and seizure control. This study underscores the critical need to personalize DBS settings, tailoring them to individual patients’ sleep patterns to maximize therapeutic benefits. While larger-scale trials are needed, our findings pave the way for patient-centric approaches to thalamic neuromodulation, offering a transformative path to improve treatment outcomes and quality of life for those with refractory epilepsy
Mult Scler
Background: Investigating the degeneration of specific thalamic nuclei in multiple sclerosis (MS) remains challenging. Methods: White-matter-nulled (WMn) MPRAGE, MP-FLAIR, and standard T1-weighted magnetic resonance imaging (MRI) were performed on MS patients (n = 15) and matched controls (n = 12). Thalamic lesions were counted in individual sequences and lesion contrast-to-noise ratio (CNR) was measured. Volumes of 12 thalamic nuclei were measured using an automatic segmentation pipeline specifically developed for WMn-MPRAGE. Results: WMn-MPRAGE showed more thalamic MS lesions (n = 35 in 9 out of 15 patients) than MP-FLAIR (n = 25) and standard T1 (n = 23), which was associated with significant improvement of CNR (p < 0.0001). MS patients had whole thalamus atrophy (p = 0.003) with lower volumes found for the anteroventral (p < 0.001), the pulvinar (p < 0.0001), and the habenular (p = 0.004) nuclei. Conclusion: WMn-MPRAGE and automatic thalamic segmentation can highlight thalamic MS lesions and measure patterns of focal thalamic atrophy. © The Author(s), 2019.Translational Research and Advanced Imaging LaboratoryBordeaux Region Aquitaine Initiative for Neuroscienc
Thalamic nuclei changes in early and late onset Alzheimer's disease
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Increasing evidence points to the thalamus as an important hub in the clinical symptomatology of the disease, with the ‘limbic thalamus’ been described as especially vulnerable. In this work, we examined thalamic atrophy in early-onset AD (EOAD) and late-onset AD (LOAD) compared to young and old healthy controls (YHC and OHC, respectively) using a recently developed cutting-edge thalamic nuclei segmentation method. A deep learning variant of Thalamus Optimized Multi Atlas Segmentation (THOMAS) was used to parcellate 11 thalamic nuclei per hemisphere from T1-weighted MRI in 88 biomarker-confirmed AD patients (49 EOAD and 39 LOAD) and 58 healthy controls (41 YHC and 17 OHC) with normal AD biomarkers. Nuclei volumes were compared among groups using MANCOVA. Further, Pearson's correlation coefficient was computed between thalamic nuclear volume and cortical—subcortical regions, CSF tau levels, and neuropsychological scores. The results showed widespread thalamic nuclei atrophy in EOAD and LOAD compared to their respective healthy control groups, with EOAD showing additional atrophy in the centromedian and ventral lateral posterior nuclei compared to YHC. In EOAD, increased thalamic nuclei atrophy was associated with posterior parietal atrophy and worse visuospatial abilities, while LOAD thalamic nuclei atrophy was preferentially associated with medial temporal atrophy and worse episodic memory and executive function. Our findings suggest that thalamic nuclei may be differentially affected in AD according to the age at symptoms onset, associated with specific cortical—subcortical regions, CSF total tau and cognition