44,134 research outputs found

    Ultracold dipolar gases - a challenge for experiments and theory

    Full text link
    We present a review of recent results concerning the physics of ultracold trapped dipolar gases. In particular, we discuss the Bose-Einstein condensation for dipolar Bose gases and the BCS transition for dipolar Fermi gases. In both cases we stress the dominant role of the trap geometry in determining the properties of the system. We present also results concerning bosonic dipolar gases in optical lattices and the possibility of obtaining variety of different quantum phases in such case. Finally, we analyze various possible routes towards achieving ultracold dipolar gases.Comment: This paper is based on the lecture given by M. Lewenstein at the Nobel Symposium ''Coherence and Condensation in Quantum Systems'', Gothesburg, 4-7.12.200

    Disorderless quasi-localization of polar gases in one-dimensional lattices

    Full text link
    One-dimensional polar gases in deep optical lattices present a severely constrained dynamics due to the interplay between dipolar interactions, energy conservation, and finite bandwidth. The appearance of dynamically-bound nearest-neighbor dimers enhances the role of the 1/r31/r^3 dipolar tail, resulting, in the absence of external disorder, in quasi-localization via dimer clustering for very low densities and moderate dipole strengths. Furthermore, even weak dipoles allow for the formation of self-bound superfluid lattice droplets with a finite doping of mobile, but confined, holons. Our results, which can be extrapolated to other power-law interactions, are directly relevant for current and future lattice experiments with magnetic atoms and polar molecules.Comment: 5 + 2 Page

    Field-induced phase transitions of repulsive spin-1 bosons in optical lattices

    Full text link
    We study the phase diagram of repulsively interacting spin-1 bosons in optical lattices at unit filling, showing that an externally induced quadratic Zeeman effect may lead to a rich physics characterized by various phases and phase transitions. We find that the main properties of the system may be described by an effective field model, which provides the precise location of the phase boundaries for any dimension, being in excellent agreement with our numerical calculations for one-dimensional systems. Our work provides a quantitative guide for the experimental analysis of various types of field-induced quantum phase transitions in spin-1 lattice bosons. These transitions, which are precluded in spin-1/2 systems, may be realized using an externally modified quadratic Zeeman coupling, similar to recent experiments with spinor condensates in the continuum.Comment: 4 pages, 2 figure

    Laser Cooling of Trapped Fermi Gases deeply below the Fermi Temperature

    Full text link
    We study the collective Raman cooling of a polarized trapped Fermi gas in the Festina Lente regime, when the heating effects associated with photon reabsorptions are suppressed. We predict that by adjusting the spontaneous Raman emission rates and using appropriately designed anharmonic traps, temperatures of the order of 2.7% of the Fermi temperature can be achieved in 3D.Comment: 4 pages, 3 figures; final versio

    Satisfying the Einstein-Podolsky-Rosen criterion with massive particles

    Get PDF
    In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here, we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 standard deviations below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.Comment: 8 pages, 7 figure

    Quantized form factor shift in the presence of free electron laser radiation

    Full text link
    In electron scattering, the target form factors contribute significantly to the diffraction pattern and carry information on the target electromagnetic charge distribution. Here we show that the presence of electromagnetic radiation, as intense as currently available in Free Electron Lasers, shifts the dependence of the target form factors by a quantity that depends on the number of photons absorbed or emitted by the electron as well as on the parameters of the electromagnetic radiation. As example, we show the impact of intense ultraviolet and soft X-ray radiation on elastic electron scattering by Ne-like Argon ion and by Xenon atom. We find that the shift brought by the radiation to the form factor is in the order of some percent. Our results may open up a new avenue to explore matter with the assistance of laser

    Mott-insulator phase of coupled 1D atomic gases in a 2D optical lattice

    Full text link
    We discuss the 2D Mott insulator (MI) state of a 2D array of coupled finite size 1D Bose gases. It is shown that the momentum distribution in the lattice plane is very sensitive to the interaction regime in the 1D tubes. In particular, we find that the disappearance of the interference pattern in time of flight experiments will not be a signature of the MI phase, but a clear consequence of the strongly interacting Tonks-Girardeau regime along the tubes.Comment: 4 pages, 3 figure
    • …
    corecore