56,288 research outputs found

    Non-equilibrium tube length fluctuations of entangled polymers

    Full text link
    We investigate the nonequilibrium tube length fluctuations during the relaxation of an initially stretched, entangled polymer chain. The time-dependent variance σ2\sigma^2 of the tube length follows in the early-time regime a simple universal power law σ2=At\sigma^2 = A \sqrt{t} originating in the diffusive motion of the polymer segments. The amplitude AA is calculated analytically both from standard reptation theory and from an exactly solvable lattice gas model for reptation and its dependence on the initial and equilibrium tube length respectively is discussed. The non-universality suggests the measurement of the fluctuations (e.g. using flourescence microscopy) as a test for reptation models.Comment: 12 pages, 2 figures. Minor typos correcte

    Negative modes and the thermodynamics of Reissner-Nordstr\"om black holes

    Full text link
    We analyse the problem of negative modes of the Euclidean section of the Reissner-Nordstr\"om black hole in four dimensions. We find analytically that a negative mode disappears when the specific heat at constant charge becomes positive. The sector of perturbations analysed here is included in the canonical partition function of the magnetically charged black hole. The result obeys the usual rule that the partition function is only well-defined when there is local thermodynamical equilibrium. We point out the difficulty in quantising Einstein-Maxwell theory, where the so-called conformal factor problem is considerably more intricate. Our method, inspired by hep-th/0608001, allows us to decouple the divergent gauge volume and treat the metric perturbations sector in a gauge-invariant way.Comment: 24 pages, 1 figure; v2 minor changes to fit published versio

    Evidence for an inflationary phase transition from the LSS and CMB anisotropy data

    Get PDF
    In the light of the recent Boomerang and Maxima observations of the CMB which show an anomalously low second acoustic peak, we reexamine the prediction by Adams et al (1997) that this would be the consequence of a 'step' in the primordial spectrum induced by a spontaneous symmetry breaking phase transition during primordial inflation. We demonstrate that a deviation from scale-invariance around k∼0.1hk\sim0.1h~Mpc−1^{-1} can simultaneously explain both the feature identified earlier in the APM galaxy power spectrum as well the recent CMB anisotropy data, with a baryon density consistent with the BBN value. Such a break also allows a good fit to the data on cluster abundances even for a critical density matter-dominated universe with zero cosmological constant.Comment: 4 pages with 3 figures, LaTeX file using espcrc2.sty to appear on the Proceedings of "Euroconference on Frontiers in Particle Astrophysics and Cosmology",Sant Feliu de Guixols,Spain,30th September-5th October of 200

    Holographic Description of Finite Size Effects in Strongly Coupled Superconductors

    Full text link
    Despite its fundamental and practical interest, the understanding of mesoscopic effects in strongly coupled superconductors is still limited. Here we address this problem by studying holographic superconductivity in a disk and a strip of typical size â„“\ell. For â„“<â„“c\ell < \ell_c, where â„“c\ell_c depends on the chemical potential and temperature, we have found that the order parameter vanishes. The superconductor-metal transition at â„“=â„“c\ell = \ell_c is controlled by mean-field critical exponents which suggests that quantum and thermal fluctuations induced by finite size effects are suppressed in holographic superconductors. Intriguingly, the effective interactions that bind the order parameter increases as â„“\ell decreases. Most of these results are consistent with experimental observations in Pb nanograins at low temperature and qualitatively different from the ones expected in a weakly coupled superconductor.Comment: 4 pages, 3 figure

    Lorentz-violating dimension-five operator contribution to the black body radiation

    Full text link
    We investigate the thermodynamics of a photon gas in an effective field theory model that describes Lorentz violations through dimension-five operators and Horava-Lifshitz theory. We explore the electrodynamics of the model which includes higher order derivatives in the Lagrangian that can modify the dispersion relation for the propagation of the photons. We shall focus on the deformed black body radiation spectrum and modified Stefan-Boltzmann law to address the allowed bounds on the Lorentz-violating parameter.Comment: 8 pages, 6 figures. Version published in PL

    Coherent State Path Integrals in the Weyl Representation

    Get PDF
    We construct a representation of the coherent state path integral using the Weyl symbol of the Hamiltonian operator. This representation is very different from the usual path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}, which involve the normal or the antinormal ordering of the Hamiltonian. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. We show that the semiclassical limit of the coherent state propagator in Weyl representation is involves classical trajectories that are independent on the coherent states width. This propagator is also free from the phase corrections found in \cite{Bar01} for the two Klauder forms and provides an explicit connection between the Wigner and the Husimi representations of the evolution operator.Comment: 23 page
    • …
    corecore