75 research outputs found

    Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-01-406

    Get PDF
    The pressure within a lithium-ion cell changes due to various chemical reactions. When a battery undergoes an unintended short circuit, the pressure changes are drastic - and often lead to uncontrolled failure of the cells. As part of work for others with Oceanit Laboratories Inc. for the NAVY STTR, NREL built Computational Fluid Dynamic (CFD) simulations that can identify potential weak spots in the battery during such events, as well as propose designs to control violent failure of batteries

    Surface Chemical Analysis of Solid-Electrolyte Interphase Layer on Germanium Thin Films and the Effect of Vinylene Carbonate Electrolyte Additive

    Get PDF
    Germanium thin-film anodes for Li-ion battery applications are the focus of the present work. As part of this chapter, we shall briefly review the use of germanium thin films in Li-ion batteries, and subsequently, new results pertaining to the effect of vinylene carbonate (VC) as electrolyte additive on the electrochemical performance are presented. We have used cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy to investigate the performance. Thin-film electrode performance with 0 wt. %, 5 wt. %, and 10 wt.% VC as electrolyte additive was compared to understand the role of additive’s concentration. The cell with 5 wt.% VC as electrolyte additive exhibited best performance with high specific capacity of 975 mAh/g, with a retention of 94 and 99% Coulombic efficiency at the end of 100 cycles. Ex situ surface chemical analysis of the solid-electrolyte interphase (SEI) layer has been studied in detail using X-ray photoelectron spectroscopy and correlated with the electrochemical performance

    (E)-1-Ferrocenyl-3-[2-(2-hydroxyethoxy)phenyl]prop-2-en-1-one

    Get PDF
    In the title compound, [Fe(C5H5)(C16H15O3)], the cyclopentadienyl rings are in an eclipsed conformation and the benzene ring makes dihedral angles of 10.84 (9) and 12.35 (9)°, respectively, with the substituted and unsubstituted cyclopentadienyl rings. In the crystal, molecules form inversion dimers through pairs of O—H...O hydrogen bonds. Weak C—H...O hydrogen bonds are observed between the dimers

    1-(4-{2-[(E)-3-(4-Chlorophenyl)-3-oxoprop-1-en-1-yl]phenoxy}butyl)-1H-indole-3-carbaldehyde

    Get PDF
    In the title compound, C28H24ClNO3, the dihedral angles between the central benzene ring and the indole ring system and the chlorobenzene ring are 70.81 (5) and 78.62 (5)°, respectively. The molecular structure is stabilized by a weak intramolecular C—H...O interaction. In the crystal, pairs of C—H...O hydrogen bonds link the molecules into inversion dimers with an R22(14) motif
    corecore