1,851 research outputs found
Clinical Approach to the Standardization of Oriental Medical Diagnostic Pattern Identification in Stroke Patients
In Korea, many stroke patients receive oriental medical care, in which pattern-identification plays a major role. Pattern-identification is Oriental Medicine's unique diagnostic system. This study attempted to standardize oriental medical pattern-identification for stroke patients. This was a community-based multicenter study that enrolled stroke patients within 30 days after their ictus. We assessed the patients' general characteristics and symptoms related to pattern-identification. Each patient's pattern was determined when two doctors had the same opinion. To determine which variables affect the pattern-identification, binary logistic regression analysis was used with the backward method. A total of 806 stroke patients were enrolled. Among 480 patients who were identified as having a certain pattern, 100 patients exhibited the Fire Heat Pattern, 210 patients the Phlegm Dampness Pattern, nine patients the Blood Stasis Pattern, 110 patients the Qi Deficiency Pattern, and 51 patients the Yin Deficiency Pattern. After the regression analysis, the predictive logistic equations for the Fire Heat, Phlegm Dampness, Qi Deficiency, and Yin Deficiency patterns were determined. The Blood Stasis Pattern was omitted because the sample size was too small. Predictive logistic equations were suggested for four of the patterns. These criteria would be useful in determining each stroke patient's pattern in clinics. However, further studies with large samples are necessary to validate and confirm these criteria
Signal Transduction Mechanisms Underlying Group I mGluR-mediated Increase in Frequency and Amplitude of Spontaneous EPSCs in the Spinal Trigeminal Subnucleus Oralis of the Rat
Group I mGluRs (mGluR1 and 5) pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs) in the spinal trigeminal subnucleus oralis (Vo), we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 μM/5 min), activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region
High-fidelity 3D Human Digitization from Single 2K Resolution Images
High-quality 3D human body reconstruction requires high-fidelity and
large-scale training data and appropriate network design that effectively
exploits the high-resolution input images. To tackle these problems, we propose
a simple yet effective 3D human digitization method called 2K2K, which
constructs a large-scale 2K human dataset and infers 3D human models from 2K
resolution images. The proposed method separately recovers the global shape of
a human and its details. The low-resolution depth network predicts the global
structure from a low-resolution image, and the part-wise image-to-normal
network predicts the details of the 3D human body structure. The
high-resolution depth network merges the global 3D shape and the detailed
structures to infer the high-resolution front and back side depth maps.
Finally, an off-the-shelf mesh generator reconstructs the full 3D human model,
which are available at https://github.com/SangHunHan92/2K2K. In addition, we
also provide 2,050 3D human models, including texture maps, 3D joints, and SMPL
parameters for research purposes. In experiments, we demonstrate competitive
performance over the recent works on various datasets.Comment: code page : https://github.com/SangHunHan92/2K2K, Accepted to CVPR
2023 (Highlight
Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus.
BackgroundDiabetic cardiomyopathy (DM CMP) is defined as cardiomyocyte damage and ventricular dysfunction directly associated with diabetes independent of concomitant coronary artery disease or hypertension. Matrix metalloproteinases (MMPs), especially MMP-2, have been reported to underlie the pathogenesis of DM CMP by increasing extracellular collagen content.PurposeWe hypothesized that two discrete MMP-2 isoforms (full length MMP-2, FL-MMP-2; N-terminal truncated MMP-2, NTT-MMP-2) are induced by high glucose stimulation in vitro and in an experimental diabetic heart model.MethodsRat cardiomyoblasts (H9C2 cells) were examined to determine whether high glucose can induce the expression of the two isoforms of MMP-2. For the in vivo study, we used the streptozotocin-induced DM mouse heart model and age-matched controls. The changes of each MMP-2 isoform expression in the diabetic mice hearts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical stains were conducted to identify the location and patterns of MMP-2 isoform expression. Echocardiography was performed to compare and analyze the changes in cardiac function induced by diabetes.ResultsQuantitative RT-PCR and immunofluorescence staining showed that the two MMP-2 isoforms were strongly induced by high glucose stimulation in H9C2 cells. Although no definite histologic features of diabetic cardiomyopathy were observed in diabetic mice hearts, left ventricular systolic dysfunction was determined by echocardiography. Quantitative RT-PCR and IHC staining showed this abnormal cardiac function was accompanied with the increases in the mRNA levels of the two isoforms of MMP-2 and related to intracellular localization.ConclusionTwo isoforms of MMP-2 were induced by high glucose stimulation in vitro and in a Type 1 DM mouse heart model. Further study is required to examine the role of these isoforms in DM CMP
The Protective Effect of Apamin on LPS/Fat-Induced Atherosclerotic Mice
Apamin, a peptide component of bee venom (BV), has anti-inflammatory properties. However, the molecular mechanisms by which apamin prevents atherosclerosis are not fully understood. We examined the effect of apamin on atherosclerotic mice. Atherosclerotic mice received intraperitoneal (ip) injections of lipopolysaccharide (LPS, 2 mg/kg) to induce atherosclerotic change and were fed an atherogenic diet for 12 weeks. Apamin (0.05 mg/kg) was administered by ip injection. LPS-induced THP-1-derived macrophage inflammation treated with apamin reduced expression of tumor necrosis factor (TNF)-α, vascular cell adhesion molecule (VCAM)-1, and intracellular cell adhesion molecule (ICAM)-1, as well as the nuclear factor kappa B (NF-κB) signaling pathway. Apamin decreased the formation of atherosclerotic lesions as assessed by hematoxylin and elastic staining. Treatment with apamin reduced lipids, Ca2+ levels, and TNF-α in the serum from atherosclerotic mice. Further, apamin significantly attenuated expression of VCAM-1, ICAM-1, TGF-β1, and fibronectin in the descending aorta from atherosclerotic mice. These results indicate that apamin plays an important role in monocyte/macrophage inflammatory processing and may be of potential value for preventing atherosclerosis
MDR-1 gene expression is a minor factor in determining the multidrug resistance phenotype of MCF7/ADR and KB-V1 cells
AbstractThe relevance of MDR-1 gene expression to the multidrug resistance phenotype was investigated. Drug-resistant cells, KB-V1 and MCF7/ADR, constantly expressed mRNA of the MDR-1 gene and were more resistant to vinblastine and adriamycin than drug-sensitive cells, KB-3–1 and MCF7. The drug efflux rate of KB-V1 was the same as KB-3–1 although the MDR-1 gene was expressed in only the resistant cell. The higher intracellular drug concentration of KB-3–1 than KB-V1 was due to the large drug influx. In the case of MCF7 and MCF7/ADR, the influx and efflux of the drug had nearly the same pattern and drug efflux was not affected by verapamil. The amount of ATP, cofactor of drug pumping activity of P-glycoprotein, was not changed by the resistance. These observations suggested that drug efflux mediated by MDR-1 gene expression was not a major determining factor of drug resistance in the present cell systems, and that the drug resistance could be derived from the change in drug uptake and other mechanisms
Use of Nafamostat Mesilate as an Anticoagulant during Extracorporeal Membrane Oxygenation
Although the incidence of bleeding complications during extracorporeal membrane oxygenator (ECMO) support has decreased in various trials, bleeding is still the most fatal complication. We investigated the ideal dosage and efficacy of nafamostat mesilate for use with ECMO in patients with acute cardiac or respiratory failure. We assessed 73 consecutive patients who received ECMO due to acute cardiac or respiratory failure between January 2006 and December 2009. To evaluate the efficacy of nafamostat mesilate, we divided the patients into 2 groups according to the anticoagulants used during ECMO support. All patients of nafamostat mesilate group were male with a mean age of 49.2 yr. Six, 3, 5, and 3 patients were diagnosed with acute myocardial infarction, cardiac arrest, septic shock, and acute respiratory distress syndrome, respectively. The mean dosage of nafamostat mesilate was 0.64 mg/kg/hr, and the mean duration of ECMO was 270.7 hr. The daily volume of transfused packed red blood cells, fresh frozen plasma, and cryoprecipitate and the number of complications related to hemorrhage and thrombosis was lower in the nafamostat mesilate group than in the heparin group. Nafamostat mesilate should be considered as an alternative anticoagulant to heparin to reduce bleeding complications during ECMO
Overexpression, crystallization and preliminary X-ray crystallographic analysis of the C-terminal cytosolic domain of mouse anoctamin 1
The C-terminal cytosolic domain of mouse anoctamin 1 (mANO1, also known as TMEM16A) was cloned, overexpressed, purified and crystallized. The crystals belonged to space group P212121 and diffracted to 2.3 Å resolution
- …