12 research outputs found

    The importance of mitophagy in maintaining mitochondrial function in U373MG cells. Bafilomycin A1 restores aminochrome induced mitochondrial damage

    No full text
    Aminochrome, an orthoquinone formed during the dopamine oxidation of neuromelanin, is neurotoxic because it induces mitochondria dysfunction, protein degradation dysfunction (both autophagy and proteasomal systems), alpha-synuclein aggregation to neurotoxic oligomers, neuroinflammation, and oxidative and endoplasmic reticulum stress. In this study, we investigated the relationship between aminochrome-induced autophagy/lysosome dysfunction and mitochondrial dysfunction in U373MGsiGST6 cells. Aminochrome (75 mu M) induces mitochondrial dysfunction as determined by (i) a significant decrease in ATP levels (70%; P < 0.001) and (ii) a significant decrease in mitochondrial membrane potential (P < 0.001). Interestingly, the pretreatment of U373MGsiGST6 cells with 100 nM bafilomycin-A1, an inhibitor of lysosomal vacuolar-type H+-ATPase, restores ATP levels, mitochondrial membrane potential, and mitophagy, and decreases cell death. These results reveal (i) the importance of macroautophagy/the lysosomal degradation system for the normal functioning of mitochondria and for cell survival, and (ii) aminochrome-induced lysosomal dysfunction depends on the aminochrome-dependent inactivation of the vacuolar-type H+-ATPase, which pumps protons into the lysosomes. This study also supports the proposed protective role of glutathione transferase mu2-2 (GSTM2) in astrocytes against aminochrome toxicity, mediated by mitochondria] and lysosomal dysfunction.FONDECTYT 1100165 1170033 University of Chile ENL014/14 CONICYT doctoral scholarship 2412145

    Novel Alpha-Synuclein Oligomers Formed with the Aminochrome-Glutathione Conjugate Are Not Neurotoxic

    No full text
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature.Aminochrome induces neurotoxic alpha-synuclein oligomer formation relevant to the etiology of Parkinson’s disease. Oxidative stress produces aminochrome from dopamine, but conjugation with glutathione catalyzed by glutathione transferase M2-2 significantly decreases aminochrome-induced toxicity and alpha-synuclein oligomer formation. Notably, in the presence of the aminochrome-glutathione conjugate, previously unknown species of alpha-synuclein oligomers are formed. These aminochrome-glutathione oligomers of alpha-synuclein differ from formerly characterized oligomers and (i) have high molecular weight, and are stable and SDS-resistant, as determined by the Western blot method, (ii) show positive NBT-quinone-protein staining, which indicates the formation of alpha-synuclein adducts containing aminochrome. Furthermore, aminochrome-glutathione alpha-synuclein oligomers (iii) have distinctive shape and size, as determi

    Glutathione Transferase-M2-2 Secreted from Glioblastoma Cell Protects SH-SY5Y Cells from Aminochrome Neurotoxicity

    No full text
    © 2014, Springer Science+Business Media New York.U373MG cells are able to take up aminochrome that induces glutathione transferase M2-2 (GSTM2) expression in a concentration-dependent manner where 100 µM aminochrome increases GSTM2 expression by 2.1-fold (P &lt; 0.001) at 3 h. The uptake of &lt;sup&gt;3&lt;/sup&gt;H-aminochrome into U373MG cells was significantly reduced in the presence of 2 µM nomifensine (P &lt; 0.001) 100 µM imipramine (P &lt; 0.001) and 50 mM dopamine (P &lt; 0.001). Interestingly, U373MG cells excrete GSTM2 into the conditioned medium and the excretion was significantly increased (2.7-fold; P &lt; 0.001) when the cells were pretreated with 50 µM aminochrome for 3 h. The U373MG-conditioned medium containing GSTM2 protects SH-SY5Y cells incubated with 10 µM aminochrome. The significant protection provided by U373MG-conditioned medium in SH-SY5Y cells incubated with aminochrome was dependent on GSTM2 internalization into SH-SY5Y cells as evidenced by (i) uptake of &lt;sup&gt;14&lt;/sup&gt;C-GSTM2 release

    Protective effects of nicotine against aminochrome-induced toxicity in substantia nigra derived cells: Implications for Parkinson's disease

    No full text
    Parkinson's disease is a debilitating progressive neurodegenerative disorder that results from the loss of or damage to dopaminergic cells containing neuromelanin in the substantia nigra (SN). The underlying neurodegenerative mechanism(s), however, remain elusive. Aminochrome, the precursor of neuromelanin is an endogenous substance capable of inducing selective neurotoxicity to dopaminergic neurons in SN. Nicotine, on the other hand, may offer protective effects against dopaminergic cell damage induced by various neurotoxins including MPTP and salsolinol. In this study, we sought to determine whether nicotine may also protect against aminochromeinduced toxicity in SN derived RCSN-3 cells. Exposure of RCSN-3 cells to a combination of aminochrome (50 μM) and dicoumarol (50 μM) for 48 h induced approximately 70 % cell death. Pretreatment with nicotine, dose-dependently blocked this toxicity. The effects of nicotine in turn were dose-dependently blocked by mecamylamine, a nonselective ni

    Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line

    No full text
    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson’s disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes

    Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction

    No full text
    U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit 3H-dopamine uptake, which is inhibited by 2 μM of nomifensine and 15 μM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 μM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 μM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunost
    corecore