984 research outputs found

    Multipartite entangled coherent states

    Full text link
    We propose a scheme for generating multipartite entangled coherent states via entanglement swapping, with an example of a physical realization in ion traps. Bipartite entanglement of these multipartite states is quantified by the concurrence. We also use the NN--tangle to compute multipartite entanglement for certain systems. Finally we establish that these results for entanglement can be applied to more general multipartite entangled nonorthogonal states.Comment: 7 pages, two figures. We added more detail discussions on the generation of multipartite entangled coherent states and multipartite entangelemen

    Generation of arbitrary two dimensional motional state of a trapped ion

    Full text link
    We present a scheme to generate an arbitrary two-dimensional quantum state of motion of a trapped ion. This proposal is based on a sequence of laser pulses, which are tuned appropriately to control transitions on the sidebands of two modes of vibration. Not more than (M+1)(N+1)(M+1)(N+1) laser pulses are needed to generate a pure state with upper phonon number MM and NN in the xx and yy direction respectively.Comment: to appear in PR

    Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED

    Get PDF
    The dynamics of the entanglement for coherent excitonic states in the system of two coupled large semiconductor quantum dots (R/aB1R/a_{B}\gg 1) mediated by a single-mode cavity field is investigated. Maximally entangled coherent excitonic states can be generated by cavity field initially prepared in odd coherent state. The entanglement of the excitonic coherent states between two dots reaches maximum when no photon is detected in the cavity. The effects of the zero-temperature environment on the entanglement of excitonic coherent state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure

    Multipartite entangled states in coupled quantum dots and cavity-QED

    Get PDF
    We investigate the generation of multipartite entangled state in a system of N quantum dots embedded in a microcavity and examine the emergence of genuine multipartite entanglement by three different characterizations of entanglement. At certain times of dynamical evolution one can generate multipartite entangled coherent exciton states or multiqubit WW states by initially preparing the cavity field in a superposition of coherent states or the Fock state with one photon, respectively. Finally we study environmental effects on multipartite entanglement generation and find that the decay rate for the entanglement is proportional to the number of excitons.Comment: 9 pages, 4 figures, to appear in Phys. Rev.

    Multiorder coherent Raman scattering of a quantum probe field

    Full text link
    We study the multiorder coherent Raman scattering of a quantum probe field in a far-off-resonance medium with a prepared coherence. Under the conditions of negligible dispersion and limited bandwidth, we derive a Bessel-function solution for the sideband field operators. We analytically and numerically calculate various quantum statistical characteristics of the sideband fields. We show that the multiorder coherent Raman process can replicate the statistical properties of a single-mode quantum probe field into a broad comb of generated Raman sidebands. We also study the mixing and modulation of photon statistical properties in the case of two-mode input. We show that the prepared Raman coherence and the medium length can be used as control parameters to switch a sideband field from one type of photon statistics to another type, or from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.

    Thermal conductivity via magnetic excitations in spin-chain materials

    Full text link
    We discuss the recent progress and the current status of experimental investigations of spin-mediated energy transport in spin-chain and spin-ladder materials with antiferromagnetic coupling. We briefly outline the central results of theoretical studies on the subject but focus mainly on recent experimental results that were obtained on materials which may be regarded as adequate physical realizations of the idealized theoretical model systems. Some open questions and unsettled issues are also addressed.Comment: 17 pages, 4 figure
    corecore