16,848 research outputs found
Rice Intensification in a Changing Environment: Impact on Water Availability in Inland Valley Landscapes in Benin
This study assesses the impact of climate change on hydrological processes under rice intensification in three headwater inland valley watersheds characterized by different land conditions. The Soil and Water Assessment Tool was used to simulate the combined impacts of two land use scenarios defined as converting 25% and 75% of lowland savannah into rice cultivation, and two climate scenarios (A1B and B1) of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. The simulations were performed based on the traditional and the rainfed-bunded rice cultivation systems and analyzed up to the year 2049 with a special focus on the period of 2030–2049. Compared to land use, climate change impact on hydrological processes was overwhelming at all watersheds. The watersheds with a high portion of cultivated areas are more sensitive to changes in climate resulting in a decrease of water yield of up to 50% (145 mm). Bunded fields cause a rise in surface runoff projected to be up to 28% (18 mm) in their lowlands, while processes were insignificantly affected at the vegetation dominated-watershed. Analyzing three watersheds instead of one as is usually done provides further insight into the natural variability and therefore gives more evidence of possible future processes and management strategie
Formation of wind-captured discs in Supergiant X-ray binaries : consequences for Vela X-1 and Cygnus X-1
In Supergiant X-ray binaries (SgXB), a compact object captures a fraction of
the wind of an O/B supergiant on a close orbit. Proxies exist to evaluate the
efficiency of mass and angular momentum accretion but they depend so
dramatically on the wind speed that given the current uncertainties, they only
set loose constrains. Furthermore, they often bypass the impact of orbital and
shock effects on the flow structure. We study the wind dynamics and the angular
momentum gained as the flow is accreted. We identify the conditions for the
formation of a disc-like structure around the accretor and the observational
consequences for SgXB. We use recent results on the wind launching mechanism to
compute 3D streamlines, accounting for the gravitational and X-ray ionizing
influence of the compact companion on the wind. Once the flow enters the Roche
lobe of the accretor, we solve the hydrodynamics equations with cooling. A
shocked region forms around the accretor as the flow is beamed. For wind speeds
of the order of the orbital speed, the shock is highly asymmetric compared to
the axisymmetric bow shock obtained for a purely planar homogeneous flow. With
net radiative cooling, the flow always circularizes for wind speeds low enough.
Although the donor star does not fill its Roche lobe, the wind can be
significantly beamed and bent by the orbital effects. The net angular momentum
of the accreted flow is then sufficient to form a persistent disc-like
structure. This mechanism could explain the proposed limited outer extension of
the accretion disc in Cygnus X-1 and suggests the presence of a disc at the
outer rim of the neutron star magnetosphere in Vela X-1, with dramatic
consequences on the spinning up of the accretor
The Detection of Defects in a Niobium Tri-layer Process
Niobium (Nb) LTS processes are emerging as the technology for future ultra high-speed systems especially in the digital domain. As the number of Josephson Junctions (JJ) per chip has recently increased to around 90000, the quality of the process has to be assured so as to realize these complex circuits. Until now, very little or no information is available in the literature on how to achieve this. In this paper we present an approach and results of a study conducted on an RSFQ process. Measurements and SEM inspection were carried out on sample chips and a list of possible defects has been identified and described in detail. We have also developed test-structures for detection of the top-ranking defects, which will be used for yield analysis and the determination of the probability distribution of faults in the process. A test chip has been designed, based on the results of this study, and certain types of defects were introduced in the design to study the behavior of faulty junctions and interconnections
Nivat's conjecture holds for sums of two periodic configurations
Nivat's conjecture is a long-standing open combinatorial problem. It concerns
two-dimensional configurations, that is, maps where is a finite set of symbols. Such configurations are often
understood as colorings of a two-dimensional square grid. Let denote
the number of distinct block patterns occurring in a configuration
. Configurations satisfying for some
are said to have low rectangular complexity. Nivat conjectured that such
configurations are necessarily periodic.
Recently, Kari and the author showed that low complexity configurations can
be decomposed into a sum of periodic configurations. In this paper we show that
if there are at most two components, Nivat's conjecture holds. As a corollary
we obtain an alternative proof of a result of Cyr and Kra: If there exist such that , then is periodic. The
technique used in this paper combines the algebraic approach of Kari and the
author with balanced sets of Cyr and Kra.Comment: Accepted for SOFSEM 2018. This version includes an appendix with
proofs. 12 pages + references + appendi
Velocity map imaging of the dynamics of reactions of Cl atoms with neopentane and tetramethyl silane
Surface stress of Ni adlayers on W(110): the critical role of the surface atomic structure
Puzzling trends in surface stress were reported experimentally for Ni/W(110)
as a function of Ni coverage. In order to explain this behavior, we have
performed a density-functional-theory study of the surface stress and atomic
structure of the pseudomorphic and of several different possible 1x7
configurations for this system. For the 1x7 phase, we predict a different, more
regular atomic structure than previously proposed based on surface x-ray
diffraction. At the same time, we reproduce the unexpected experimental change
of surface stress between the pseudomorphic and 1x7 configuration along the
crystallographic surface direction which does not undergo density changes. We
show that the observed behavior in the surface stress is dominated by the
effect of a change in Ni adsorption/coordination sites on the W(110) surface.Comment: 14 pages, 3 figures Published in J. Phys.: Condens. Matter 24 (2012)
13500
Near-Infrared Kinetic Spectroscopy of the HO_2 and C_2H_5O_2 Self-Reactions and Cross Reactions
The self-reactions and cross reactions of the peroxy radicals HO_2 and C_2H_5O_2 and HO_2 were monitored using simultaneous independent spectroscopic probes to observe each radical species. Wavelength modulation (WM) near-infrared (NIR) spectroscopy was used to detect HO_2, and UV absorption monitored HO_2 and C_2H_5O_2. The temperature dependences of these reactions were investigated over a range of interest to tropospheric chemistry, 221−296 K. The Arrhenius expression determined for the cross reaction, k_2(T) = (6.01^(+1.95)_(−1.47)) × 10^(−13) exp((638 ± 73)/T) cm^3 molecules^(−1) s^(−1) is in agreement with other work from the literature. The measurements of the HO_2 self-reaction agreed with previous work from this lab and were not further refined.(1) The C_2H_5O_2 self-reaction is complicated by secondary production of HO_2. This experiment performed the first direct measurement of the self-reaction rate constant, as well as the branching fraction to the radical channel, in part by measurement of the secondary HO_2. The Arrhenius expression for the self-reaction rate constant is k_3(T) = (1.29^(+0.34)_(−0.27)) × 10^(−13)exp((−23 ± 61)/T) cm^3 molecules^(−1) s^(−1), and the branching fraction value is α = 0.28 ± 0.06, independent of temperature. These values are in disagreement with previous measurements based on end product studies of the branching fraction. The results suggest that better characterization of the products from RO_2 self-reactions are required
Efficient Computation of Multiple Density-Based Clustering Hierarchies
HDBSCAN*, a state-of-the-art density-based hierarchical clustering method,
produces a hierarchical organization of clusters in a dataset w.r.t. a
parameter mpts. While the performance of HDBSCAN* is robust w.r.t. mpts in the
sense that a small change in mpts typically leads to only a small or no change
in the clustering structure, choosing a "good" mpts value can be challenging:
depending on the data distribution, a high or low value for mpts may be more
appropriate, and certain data clusters may reveal themselves at different
values of mpts. To explore results for a range of mpts values, however, one has
to run HDBSCAN* for each value in the range independently, which is
computationally inefficient. In this paper, we propose an efficient approach to
compute all HDBSCAN* hierarchies for a range of mpts values by replacing the
graph used by HDBSCAN* with a much smaller graph that is guaranteed to contain
the required information. An extensive experimental evaluation shows that with
our approach one can obtain over one hundred hierarchies for the computational
cost equivalent to running HDBSCAN* about 2 times.Comment: A short version of this paper appears at IEEE ICDM 2017. Corrected
typos. Revised abstrac
Observational properties of massive black hole binary progenitors
The first directly detected gravitational waves (GW 150914) were emitted by
two coalescing black holes (BHs) with masses of ~36Msun and ~29Msun. Several
scenarios have been proposed to put this detection into an astrophysical
context. The evolution of an isolated massive binary system is among commonly
considered models. Various groups have performed detailed binary-evolution
calculations that lead to BH merger events. However, the question remains open
as to whether binary systems with the predicted properties really exist. The
aim of this paper is to help observers to close this gap by providing spectral
characteristics of massive binary BH progenitors during a phase where at least
one of the companions is still non-degenerate. Stellar evolution models predict
fundamental stellar parameters. Using these as input for our stellar atmosphere
code (PoWR), we compute a set of models for selected evolutionary stages of
massive merging BH progenitors at different metallicities. The synthetic
spectra obtained from our atmosphere calculations reveal that progenitors of
massive BH merger events start their lives as O2-3V stars that evolve to
early-type blue supergiants before they undergo core-collapse during the
Wolf-Rayet phase. When the primary has collapsed, the remaining system will
appear as a wind-fed high-mass X-ray binary. We provide feedback parameters,
broad band magnitudes, and spectral templates that should help to identify such
binaries in the future. Comparisons of empirically determined mass-loss rates
with those assumed by evolution calculations reveal significant differences.
The consideration of the empirical mass-loss rates in evolution calculations
will possibly entail a shift of the maximum in the predicted binary-BH merger
rate to higher metallicities, that is, more candidates should be expected in
our cosmic neighborhood than previously assumed.Comment: 64 pages, 30 figures, accepted for publication in Astronomy &
Astrophysics, v2: typos correcte
- …