79 research outputs found

    (E)-1-(4-Meth­oxy­phen­yl)-3-(3,4,5-trimeth­oxy­phen­yl)prop-2-en-1-one

    Get PDF
    The title compound, C19H20O5, was synthesized by reaction of 4-meth­oxy­acetophenone and 3,4,5-trimeth­oxy-benzaldehyde. The aromatic rings form a dihedral angle of 36.39 (7)°. Two intramolecular C—H⋯O hydrogen bonds occur. The crystal packing features weak C—H⋯O inter­actions

    Accreting Protoplanets in the LkCa 15 Transition Disk

    Full text link
    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{\alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item

    The second internal transcribed spacer of nuclear ribosomal DNA as a tool for Latin American anopheline taxonomy: a critical review

    Full text link

    Impact of supragingival therapy on subgingival microbial profile in smokers versus non-smokers with severe chronic periodontitis

    Get PDF
    The aim of this study was to assess subgingival microbiological changes in smokers versus non-smokers presenting severe chronic periodontitis after supragingival periodontal therapy (ST).Non-smokers (n=10) and smokers (n=10) presenting at least nine teeth with probing pocket depth (PPD) (≥5 mm), bleeding on probing (BoP), and no history of periodontal treatment in the last 6 months were selected. Clinical parameters assessed were plaque index (PI), BoP, PPD, relative gingival margin position (rGMP) and relative clinical attachment level (rCAL). Subgingival biofilm was collected before and 21 days after ST. DNA was extracted and the 16S rRNA gene was amplified with the universal primer pair, 27F and 1492R. Amplified genes were cloned, sequenced, and identified by comparison with known 16S rRNA sequences. Statistical analysis was performed by Student's t and Chi-Square tests (α=5%).Clinically, ST promoted a significant reduction in PI and PPD, and gain of rCAL for both groups, with no significant intergroup difference. Microbiologically, at baseline, data analysis demonstrated that smokers harbored a higher proportion of Porphyromonas endodontalis, Bacteroidetes sp., Fusobacterium sp. and Tannerella forsythia and a lower number of cultivated phylotypes (p<0.05). Furthermore, non-smokers featured significant reductions in key phylotypes associated with periodontitis, whereas smokers presented more modest changes.Within the limits of the present study, ST promoted comparable clinical improvements in smokers and non-smokers with severe chronic periodontitis. However, in smokers, ST only slightly affected the subgingival biofilm biodiversity, as compared with non-smokers

    Observing Exoplanets with the James Webb Space Telescope

    Get PDF
    The census of exoplanets has revealed an enormous variety of planets or- biting stars of all ages and spectral types: planets in orbits of less than a day to frigid worlds in orbits over 100 AU; planets with masses 10 times that of Jupiter to planets with masses less than that of Earth; searingly hot planets to temperate planets in the Habitable Zone. The challenge of the coming decade is to move from demography to physical characterization. The James Webb Space Telescope (JWST) is poised to open a revolutionary new phase in our understanding of exoplanets with transit spectroscopy of relatively short period planets and coronagraphic imaging of ones with wide separations from their host stars. This article discusses the wide variety of exoplanet opportunities enabled by JWSTs sensitivity and stability, its high angular resolution, and its suite of powerful instruments. These capabilities will advance our understanding of planet formation, brown dwarfs, and the atmospheres of young to mature planets
    corecore