170 research outputs found

    Caracterização das plantas daninhas em áreas de sistemas de preparo de solo de longa duração.

    Get PDF
    bitstream/item/211242/1/Cot-241.pd

    Accreting Protoplanets in the LkCa 15 Transition Disk

    Full text link
    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{\alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item

    Accreting protoplanets: Spectral signatures and magnitude of gas and dust extinction at H α

    Get PDF
    Context. Accreting planetary-mass objects have been detected at H α, but targeted searches have mainly resulted in non-detections. Accretion tracers in the planetary-mass regime could originate from the shock itself, making them particularly susceptible to extinction by the accreting material. High-resolution (R > 50 000) spectrographs operating at H α should soon enable one to study how the incoming material shapes the line profile. Aims. We calculate how much the gas and dust accreting onto a planet reduce the H α flux from the shock at the planetary surface and how they affect the line shape. We also study the absorption-modified relationship between the H α luminosity and accretion rate. Methods. We computed the high-resolution radiative transfer of the H α line using a one-dimensional velocity–density–temperature structure for the inflowing matter in three representative accretion geometries: spherical symmetry, polar inflow, and magnetospheric accretion. For each, we explored the wide relevant ranges of the accretion rate and planet mass. We used detailed gas opacities and carefully estimated possible dust opacities. Results. At accretion rates of Ṁ ≲ 3 × 10−6 MJ yr−1, gas extinction is negligible for spherical or polar inflow and at most AH α ≲ 0.5 mag for magnetospheric accretion. Up to Ṁ ≈ 3 × 10−4 MJ yr−1, the gas contributes AH α ≲ 4 mag. This contribution decreases with mass. We estimate realistic dust opacities at H α to be κ ~ 0.01–10 cm2 g−1, which is 10–104 times lower than in the interstellar medium. Extinction flattens the LH α –Ṁ relationship, which becomes non-monotonic with a maximum luminosity LH α ~ 10−4 L⊙ towards Ṁ ≈ 10−4 MJ yr−1 for a planet mass ~10 MJ. In magnetospheric accretion, the gas can introduce features in the line profile, while the velocity gradient smears them out in other geometries. Conclusions. For a wide part of parameter space, extinction by the accreting matter should be negligible, simplifying the interpretation of observations, especially for planets in gaps. At high Ṁ, strong absorption reduces the H α flux, and some measurements can be interpreted as two Ṁ values. Highly resolved line profiles (R ~ 105) can provide (complex) constraints on the thermal and dynamical structure of the accretion flow

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    The brightest gamma-ray flaring blazar in the sky: AGILE and multi-wavelength observations of 3C 454.3 during November 2010

    Full text link
    Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s on a time scale of about 12 hours, more than a factor of 6 higher than the flux of the brightest steady gamma-ray source, the Vela pulsar, and more than a factor of 3 brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make a thorough study of the present event possible: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the gamma-ray flare, we find that the radio, optical and X-ray emission varies within a factor 2-3, whereas the gamma-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons.Comment: Accepted for publication in ApJ Letters. 18 Pages, 4 Figures, 1 Tabl

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Paving (through) Amazonia: Neoliberal Urbanism and the Reperipheralization of Roraima

    Get PDF
    This paper examines the neoliberal reshaping of infrastructure provision in Brazil's extreme north since the mid-1990s, when roadway investments resulted in unprecedented regional connectivity. The BR-174 upgrade, the era's most important project, marked a transition from resource-based developmentalism to free-market transnationalism. Primarily concerned with urban competitiveness, the federal government funded the trunk roadway's paving to facilitate manufacturing exports from Manaus. While an effort was made to minimize deforestation, planners sidelined development implications in adjacent Roraima. The state's urban system has thus experienced reperipheralization and intensified primacy. Market-led growth now compounds the inheritance of hierarchical centralism and ongoing governmental neglect. Our study shows a vast territory dependent on primate cities for basic goods and services. Travelling with Roraimans from bypassed towns, we detected long-distance passenger transportation and surface logistics with selective routes. Heterogeneous Roraiman (im)mobilities comprise middle-class tourism and heightened consumerism as well as informal mobility tactics and transnational circulations of precarious labor. The paper exhorts neoliberal urbanism research to look beyond both Euro America's metropoles and their Global South counterparts. Urbanization dynamics in Brazil's extreme north demonstrate that market-disciplined investments to globalize cities produce far-reaching spatial effects. These are felt even by functionally-articulated-yet-marginalized peripheries in ostensibly remote locations
    corecore