14 research outputs found

    Applications of different machine learning approaches in prediction of breast cancer diagnosis delay

    Get PDF
    Background: The increasing rate of breast cancer (BC) incidence and mortality in Iran has turned this disease into a challenge. A delay in diagnosis leads to more advanced stages of BC and a lower chance of survival, which makes this cancer even more fatal. Objectives: The present study was aimed at identifying the predicting factors for delayed BC diagnosis in women in Iran. Methods: In this study, four machine learning methods, including extreme gradient boosting (XGBoost), random forest (RF), neural networks (NNs), and logistic regression (LR), were applied to analyze the data of 630 women with confirmed BC. Also, different statistical methods, including chi-square, p-value, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC), were utilized in different steps of the survey. Results: Thirty percent of patients had a delayed BC diagnosis. Of all the patients with delayed diagnoses, 88.5% were married, 72.1% had an urban residency, and 84.8% had health insurance. The top three important factors in the RF model were urban residency (12.04), breast disease history (11.58), and other comorbidities (10.72). In the XGBoost, urban residency (17.54), having other comorbidities (17.14), and age at first childbirth (>30) (13.13) were the top factors; in the LR model, having other comorbidities (49.41), older age at first childbirth (82.57), and being nulliparous (44.19) were the top factors. Finally, in the NN, it was found that being married (50.05), having a marriage age above 30 (18.03), and having other breast disease history (15.83) were the main predicting factors for a delayed BC diagnosis. Conclusion: Machine learning techniques suggest that women with an urban residency who got married or had their first child at an age older than 30 and those without children are at a higher risk of diagnosis delay. It is necessary to educate them about BC risk factors, symptoms, and self-breast examination to shorten the delay in diagnosis. 2023 Dehdar, Salimifard, Mohammadi, Marzban, Saadatmand, Fararouei and Dianati-Nasab

    Applications of different machine learning approaches in prediction of breast cancer diagnosis delay

    Get PDF
    Background: The increasing rate of breast cancer (BC) incidence and mortality in Iran has turned this disease into a challenge. A delay in diagnosis leads to more advanced stages of BC and a lower chance of survival, which makes this cancer even more fatal. Objectives: The present study was aimed at identifying the predicting factors for delayed BC diagnosis in women in Iran. Methods: In this study, four machine learning methods, including extreme gradient boosting (XGBoost), random forest (RF), neural networks (NNs), and logistic regression (LR), were applied to analyze the data of 630 women with confirmed BC. Also, different statistical methods, including chi-square, p-value, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC), were utilized in different steps of the survey. Results: Thirty percent of patients had a delayed BC diagnosis. Of all the patients with delayed diagnoses, 88.5% were married, 72.1% had an urban residency, and 84.8% had health insurance. The top three important factors in the RF model were urban residency (12.04), breast disease history (11.58), and other comorbidities (10.72). In the XGBoost, urban residency (17.54), having other comorbidities (17.14), and age at first childbirth (>30) (13.13) were the top factors; in the LR model, having other comorbidities (49.41), older age at first childbirth (82.57), and being nulliparous (44.19) were the top factors. Finally, in the NN, it was found that being married (50.05), having a marriage age above 30 (18.03), and having other breast disease history (15.83) were the main predicting factors for a delayed BC diagnosis. Conclusion: Machine learning techniques suggest that women with an urban residency who got married or had their first child at an age older than 30 and those without children are at a higher risk of diagnosis delay. It is necessary to educate them about BC risk factors, symptoms, and self-breast examination to shorten the delay in diagnosis. Copyright © 2023 Dehdar, Salimifard, Mohammadi, Marzban, Saadatmand, Fararouei and Dianati-Nasab

    Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer

    No full text
    Breast cancer is one of the most important women-related malignancies, which is incurable (particularly in advanced stages) and tumor microenvironment is a number one accused part in the inefficiency of current anti-breast cancer therapeutic strategies. The tumor microenvironment is composed of various cellular and acellular components, which provide an optimum condition for freely expanding cancer cells in various cancer types, particularly breast cancer. Cancer-associated fibroblasts (CAFs) are one of the main cell types in the breast tumor region, which can promote various tumor-promoting processes such as expansion, angiogenesis, metastasis and drug resistance. CAFs directly (by cell-to-cell communication) and indirectly (through secreting soluble factors) can exert their tumorigenic functions. We try to elucidate the immunobiology of CAFs, their origin, function, and heterogeneity in association with their role in various cancer-promoting processes in breast cancer. Based on current knowledge, we believe that the origin of CAFs, their subsets, and their specific expressed biomarkers determine their pro- or anti-tumor functions. Therefore, targeting CAF without considering their specific functions may lead to a deleterious outcome. We propose to find and characterize each subtype of CAFs in association with its specific function in different stages of breast cancer to develop novel promising therapeutic approaches against the right CAF subtype

    Developing an Advanced Cloud-Based Vehicle Routing and Scheduling System for Urban Freight Transportation

    No full text
    Part 3: Smart City Interoperability and Cross-Platform ImplementationInternational audienceIn today’s challenging sector of logistics and transportation, companies, seek to adapt software which leads to efficient solutions at an acceptable cost. Conventional routing software is developed to solve vehicle routing problem and help managers and planners in decision making. Simultaneously, specific constraints and different VRP (Vehicle Routing Problem) variants are considered each time, such as the Capacitated, the Multi Depot and the Pickup and Delivery VRP. However, the last few years the need for more reliable deliveries and better customer services arose. In addition, reducing travel distance, travel cost and environmental impact are important factors encountered in urban freight transportation. Therefore, routing software needs to take into account multiple constraints. Such constraints are traffic congestion, speed limits, transportation regulations and restricted zones. These constraints affect mainly Time dependent VRP, VRP with Time Windows, Dynamic VRP and Green VRP. Data collection and processing are essential in routing software for solving these variants and offering the best solution. The methods for solving these problems, along with technological achievements, including cloud computing, can lead to efficient, easily adaptable routing software. Such software solutions can eventually render companies with complex transportation and logistics problems, competitive. The scope of this paper is to describe the concept and methodological approach for the development of such a routing and scheduling system, operating in a cloud environment. The definition of its requirements and the development of the system is the main purpose of an ongoing research project, being in its first stages of system’s analysis and design

    Towards a library for process programming

    No full text
    Abstract. Process programming is regarded as a critical approach in many cooperative process related areas including software engineering, workflow management, business process management, etc. Many process models, languages, and corresponding runtime support systems have been developed. We argue that a comprehensive library for process programming is essential for the acceptance, popularity, and success of this new programming paradigm. We define an architecture of such a library and present some mechanisms on how the architecture is implemented in the context of P, a process language and system for developing integrated cooperation applications.
    corecore