1,084 research outputs found

    Physical interpretation of the Wigner rotations and its implications for relativistic quantum information

    Full text link
    We present a new treatment for the spin of a massive relativistic particle in the context of quantum information based on a physical interpretation of the Wigner rotations, obtaining different results in relation to the previous works. We are lead to the conclusions that it is not possible to define a reduced density matrix for the particle spin and that the Pauli-Lubanski (or similar) spin operators are not suitable to describe measurements where spin couples to an electromagnetic field in the measuring apparatus. These conclusions contradict the assumptions made by most of the previous papers on the subject. We also propose an experimental test of our formulation.Comment: 10 pages, 2 figures. Several changes were made on the text. One extra example was include

    Geometrically induced singular behavior of entanglement

    Get PDF
    We show that the geometry of the set of quantum states plays a crucial role in the behavior of entanglement in different physical systems. More specifically it is shown that singular points at the border of the set of unentangled states appear as singularities in the dynamics of entanglement of smoothly varying quantum states. We illustrate this result by implementing a photonic parametric down conversion experiment. Moreover, this effect is connected to recently discovered singularities in condensed matter models.Comment: v2: 4 pags, 4 figs. A discussion before the proof of Proposition 1 and tomographic results were included, Propostion 2 was removed and the references were fixe

    Solving Large Scale Crew Scheduling Problems in Practice

    Get PDF
    This paper deals with large-scale crew scheduling problems arising at the Dutch railway operator, Netherlands Railways (NS). NS operates about 30,000 trains a week. All these trains need a driver and a certain number of guards. Some labor rules restrict the duties of a certain crew base over the complete week. Therefore splitting the problem in several subproblems per day leads to suboptimal solutions. In this paper, we present an algorithm, called LUCIA, which can solve such huge instances without splitting. This algorithm combines Lagrangian heuristics, column generation and fixing techniques. We compare the results with existing practice. The results show that the new method significantly improves the solution
    corecore