14,638 research outputs found

    Peculiar Velocities of Nonlinear Structure: Voids in McVittie Spacetime

    Get PDF
    As a study of peculiar velocities of nonlinear structure, we analyze the model of a relativistic thin-shell void in the expanding universe. (1) Adopting McVittie (MV) spacetime as a background universe, we investigate the dynamics of an uncompensated void with negative MV mass. Although the motion itself is quite different from that of a compensated void, as shown by Haines & Harris (1993), the present peculiar velocities are not affected by MV mass. (2) We discuss how precisely the formula in the linear perturbation theory applies to nonlinear relativistic voids, using the results in (1) as well as the previous results for the homogeneous background (Sakai, Maeda, & Sato 1993). (3) We re-examine the effect of the cosmic microwave background radiation. Contrary to the results of Pim & Lake (1986, 1988), we find that the effect is negligible. We show that their results are due to inappropriate initial conditions. Our results (1)-(3) suggest that the formula in the linear perturbation theory is approximately valid even for nonlinear voids.Comment: 12 pages, aastex, 4 ps figures separate, Fig.2 added, to appear in Ap

    The second phase transition in the pyrochlore oxide Cd2Re2O7

    Full text link
    Evidence for another phase transition at 120 K in the metallic pyrochlore oxide Cd2Re2O7, following the structural transition at 200 K and followed by the superconducting transition at 1.0 K, is given through resistivity, magnetoresistance, specific heat, and X-ray diffraction measurements. The results indicate unique successive structural and electronic transitions occurring in the pyrochlore compound, revealing an interesting interplay between the crystal and electronic structures on the itinerant electron system in the pyrochlore lattice

    Charge Exchange Spin-Dipole Excitations of 90Zr and 208Pb and Neutron Matter Equation of State

    Get PDF
    Charge exchange spin-dipole (SD) excitations of 90^{90}Zr and 208^{208}Pb are studied by using a Skyrme Hartree-Fock(HF) + Random Phase approximation (RPA). The calculated spin-dipole strength distributions are compared with experimental data obtained by 90^{90}Zr (p,n) 90^{90}Nb and 90^{90}Zr (n,p) 90^{90} Nb reactions. The model-independent SD sum rule values of various Skyrme interactions are studied in comparison with the experimental values in order to determine the neutron skin thickness of 90^{90}Zr. The pressure of the neutron matter equation of state (EOS) and the nuclear matter symmetry energy are discussed in terms of the neutron skin thickness and peak energies of SD strength distributions.Comment: 26pages, 10figure

    Single Impurity Anderson Model with Coulomb Repulsion between Conduction Electrons on the Nearest-Neighbour Ligand Orbital

    Full text link
    We study how the Kondo effect is affected by the Coulomb interaction between conduction electrons on the basis of a simplified model. The single impurity Anderson model is extended to include the Coulomb interaction on the nearest-neighbour ligand orbital. The excitation spectra are calculated using the numerical renormalization group method. The effective bandwidth on the ligand orbital, DeffD^{eff}, is defined to classify the state. This quantity decreases as the Coulomb interaction increases. In the Deff>ΔD^{eff} > \Delta region, the low energy properties are described by the Kondo state, where Δ\Delta is the hybridization width. As DeffD^{eff} decreases in this region, the Kondo temperature TKT_{K} is enhanced, and its magnitude becomes comparable to Δ\Delta for DeffΔD^{eff} \sim \Delta. In the Deff<ΔD^{eff} < \Delta region, the local singlet state between the electrons on the ff and ligand orbitals is formed.Comment: 5 pages, 3 figures, LaTeX, to be published in J. Phys. Soc. Jpn Vol. 67 No.

    Metamagnetism of antiferromagnetic XXZ quantum spin chains

    Full text link
    The magnetization process of the one-dimensional antiferromagnetic Heisenberg model with the Ising-like anisotropic exchange interaction is studied by the exact diagonalization technique. It results in the evidence of the first-order spin flop transition with a finite magnetization jump in the N\'eel ordered phase for S1S\geq 1. It implies that the S=1/2 chain is an exceptional case where the metamagnetic transition becomes second-order due to large quantum fluctuations.Comment: 4 pages, Revtex, with 6 eps figure

    Topological Inflation with Multiple Winding

    Get PDF
    We analyze the core dynamics of critically coupled, superheavy gauge vortices in the (2+1) dimensional Einstein-Abelian-Higgs system. By numerically solving the Eistein and field equations for various values of the symmetry breaking scale, we identify the regime in which static solutions cease to exist and topological inflation begins. We explicitly include the topological winding of the vortices into the calculation and extract the dependence on the winding of the critical scale separating the static and inflating regimes. Extrapolation of our results suggests that topological inflation might occur within high winding strings formed at the Grand Unified scale.Comment: 13 pages, 4 figures, RevTe

    Numerical Renormalization Group Study of non-Fermi-liquid State on Dilute Uranium Systems

    Full text link
    We investigate the non-Fermi-liquid (NFL) behavior of the impurity Anderson model (IAM) with non-Kramers doublet ground state of the f2^2 configuration under the tetragonal crystalline electric field (CEF). The low energy spectrum is explained by a combination of the NFL and the local-Fermi-liquid parts which are independent with each other. The NFL part of the spectrum has the same form to that of two-channel-Kondo model (TCKM). We have a parameter range that the IAM shows the lnT- \ln T divergence of the magnetic susceptibility together with the positive magneto resistance. We point out a possibility that the anomalous properties of Ux_xTh1x_{1-x}Ru2_2Si2_2 including the decreasing resistivity with decreasing temperature can be explained by the NFL scenario of the TCKM type. We also investigate an effect of the lowering of the crystal symmetry. It breaks the NFL behavior at around the temperature, δ/10\delta /10, where δ\delta is the orthorhombic CEF splitting. The NFL behavior is still expected above the temperature, δ/10\delta/10.Comment: 25 pages, 12 figure

    Hierarchical fragmentation and collapse signatures in a high-mass starless region

    Full text link
    Aims: Understanding the fragmentation and collapse properties of the dense gas during the onset of high-mass star formation. Methods: We observed the massive (~800M_sun) starless gas clump IRDC18310-4 with the Plateau de Bure Interferometer (PdBI) at sub-arcsecond resolution in the 1.07mm continuum andN2H+(3-2) line emission. Results: Zooming from a single-dish low-resolution map to previous 3mm PdBI data, and now the new 1.07mm continuum observations, the sub-structures hierarchically fragment on the increasingly smaller spatial scales. While the fragment separations may still be roughly consistent with pure thermal Jeans fragmentation, the derived core masses are almost two orders of magnitude larger than the typical Jeans mass at the given densities and temperatures. However, the data can be reconciled with models using non-homogeneous initial density structures, turbulence and/or magnetic fields. While most sub-cores remain (far-)infrared dark even at 70mum, we identify weak 70mum emission toward one core with a comparably low luminosity of ~16L_sun, re-enforcing the general youth of the region. The spectral line data always exhibit multiple spectral components toward each core with comparably small line widths for the individual components (in the 0.3 to 1.0km/s regime). Based on single-dish C18O(2-1) data we estimate a low virial-to-gas-mass ratio <=0.25. We discuss that the likely origin of these spectral properties may be the global collapse of the original gas clump that results in multiple spectral components along each line of sight. Even within this dynamic picture the individual collapsing gas cores appear to have very low levels of internal turbulence.Comment: 8 pages, 4 figures, A&A in pres
    corecore