576 research outputs found
Quasinormal ringing of acoustic black holes in Laval nozzles: Numerical simulations
Quasinormal ringing of acoustic black holes in Laval nozzles is discussed.
The equation for sounds in a transonic flow is written into a
Schr\"{o}dinger-type equation with a potential barrier, and the quasinormal
frequencies are calculated semianalytically. From the results of numerical
simulations, it is shown that the quasinormal modes are actually excited when
the transonic flow is formed or slightly perturbed, as well as in the real
black hole case. In an actual experiment, however, the purely-outgoing boundary
condition will not be satisfied at late times due to the wave reflection at the
end of the apparatus, and a late-time ringing will be expressed as a
superposition of "boxed" quasinormal modes. It is shown that the late-time
ringing damps more slowly than the ordinary quasinormal ringing, while its
central frequency is not greatly different from that of the ordinary one. Using
this fact, an efficient way for experimentally detecting the quasinormal
ringing of an acoustic black hole is discussed.Comment: 9 pages, 8 figures, accepted for publication in Physical Review
The CWKB particle production and classical condensate in de Sitter spacetime
The complex time WKB approximation is an effective tool in studying particle
production in curved spacetime. We use it in this work to understand the
formation of classical condensate in expanding de Sitter spacetime. The CWKB
leads to the emergence of thermal spectrum that depends crucially on horizons
(as in de Sitter spacetime) or observer dependent horizons (as in Rindler
spacetime). A connection is sought between the horizon and the formation of
classical condensate. We concentrate on de Sitter spacetime and study the
cosmological perturbation of mode with various values of . We find
that for a minimally coupled free scalar field for , the one-mode
occupation number grows more than unity soon after the physical wavelength of
the mode crosses the Hubble radius and soon after diverges as , where . The results substantiates the previous works in this
direction. We also find the correct oscillation and behaviour of at
small from a single expression using CWKB approximation for various values
of . We also discuss decoherence in relation to the formation of
classical condensate. We also find that the squeezed state formalism and CWKB
method give identical results.Comment: 19 pages, revtex, 5 figure
A new regime of anomalous penetration of relativistically strong laser radiation into an overdense plasma
It is shown that penetration of relativistically intense laser light into an
overdense plasma, accessible by self-induced transparency, occurs over a finite
length only. The penetration length depends crucially on the overdense plasma
parameter and increases with increasing incident intensity after exceeding the
threshold for self-induced transparency. Exact analytical solutions describing
the plasma-field distributions are presented.Comment: 6 pages, 2 figures in 2 separate eps files; submitted to JETP Letter
Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions
Two scenarios for the penetration of relativistically intense laser radiation
into an overdense plasma, accessible by self-induced transparency, are
presented. For supercritical densities less than 1.5 times the critical one,
penetration of laser energy occurs by soliton-like structures moving into the
plasma. At higher background densities laser light penetrates over a finite
length only, that increases with the incident intensity. In this regime
plasma-field structures represent alternating electron layers separated by
about half a wavelength by depleted regions.Comment: 9 pages, 4 figures, submitted for publication to PR
New features on the expression and trafficking of mglur1 splice variants exposed by two novel mutant mouse lines
Metabotropic glutamate receptors (mGluRs) couple to G-proteins to modulate slow synaptic transmission via intracellular second messengers. The first cloned mGluR, mGluR1, regulates motor coordination, synaptic plasticity and synapse elimination. mGluR1 undergoes alternative splicing giving rise to four translated variants that differ in their intracellular C-terminal domains. Our current knowledge about mGluR1 relates almost entirely to the long mGluR1α isoform, whereas little is known about the other shorter variants. To study the expression of mGluR1Îł, we have generated by means of the CRISPR/Cas9 system a new knock-in (KI) mouse line in which the C-terminus of this variant carries two short tags. Using this mouse line, we could establish that mGluR1Îł is either untranslated or in amounts that are undetectable in the mouse cerebellum, indicating that only mGluR1α and mGluR1ÎČ are present and active at cerebellar synapses. The trafficking and function of mGluR1 appear strongly influenced by adaptor proteins such as long Homers that bind to the C-terminus of mGluR1α. We generated a second transgenic (Tg) mouse line in which mGluR1α carries a point mutation in its Homer binding domain and studied whether disruption of this interaction influenced mGluR1 subcellular localization at cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses by means of the freeze-fracture replica immunolabeling technique. These Tg animals did not show any overt behavioral phenotype, and despite the typical mGluR1 perisynaptic distribution was not significantly changed, we observed a higher probability of intrasynaptic diffusion suggesting that long Homers regulate the lateral mobility of mGluR1. We extended our ultrastructural analysis to other mouse lines in which only one mGluR1 variant was reintroduced in PC of mGluR1-knock out (KO) mice. This work revealed that mGluR1α preferentially accumulates closer to the edge of the postsynaptic density (PSD), whereas mGluR1ÎČ has a less pronounced perijunctional distribution and, in the absence of mGluR1α, its trafficking to the plasma membrane is impaired with an accumulation in intracellular organelles. In conclusion, our study sets several firm points on largely disputed matters, namely expression of mGluR1Îł and role of the C-terminal domain of mGluR1 splice variants on their perisynaptic clustering
Higher Curvature Corrections to Primordial Fluctuations in Slow-roll Inflation
We study higher curvature corrections to the scalar spectral index, the
tensor spectral index, the tensor-to-scalar ratio, and the polarization of
gravitational waves. We find that the higher curvature corrections can not be
negligible in the dynamics of the scalar field, although they are energetically
negligible. Indeed, it turns out that the tensor-to-scalar ratio could be
enhanced and the tensor spectral index could be blue due to the Gauss-Bonnet
term. We estimate the degree of circular polarization of gravitational waves
generated during the slow-roll inflation. We argue that the circular
polarization can be observable with the help both of the Gauss-Bonnet and
parity violating terms. We also present several examples to reveal
observational implications of higher curvature corrections for chaotic
inflationary models.Comment: 12 pages, 4 figure
Bogoliubov theory of the Hawking effect in Bose-Einstein condensates
Artificial black holes may demonstrate some of the elusive quantum properties
of the event horizon, in particular Hawking radiation. One promising candidate
is a sonic hole in a Bose-Einstein condensate. We clarify why Hawking radiation
emerges from the condensate and how this condensed-matter analog reflects some
of the intriguing aspects of quantum black holes
Optimal Location of Two Laser-interferometric Detectors for Gravitational Wave Backgrounds at 100 MHz
Recently, observational searches for gravitational wave background (GWB) have
been developed and given constraints on the energy density of GWB in a broad
range of frequencies. These constraints have already resulted in the rejection
of some theoretical models of relatively large GWB spectra. However, at 100
MHz, there is no strict upper limit from direct observation, though an indirect
limit exists due to He4 abundance due to big-bang nucleosynthesis. In our
previous paper, we investigated the detector designs that can effectively
respond to GW at high frequencies, where the wavelength of GW is comparable to
the size of a detector, and found that the configuration, a so-called
synchronous-recycling interferometer is best at these sensitivity. In this
paper, we investigated the optimal location of two synchronous-recycling
interferometers and derived their cross-correlation sensitivity to GWB. We
found that the sensitivity is nearly optimized and hardly changed if two
coaligned detectors are located within a range 0.2 m, and that the sensitivity
achievable in an experiment is far below compared with the constraint
previously obtained in experiments.Comment: 17 pages, 6 figure
Dynamical aspects of quantum entanglement for weakly coupled kicked tops
We investigate how the dynamical production of quantum entanglement for
weakly coupled, composite quantum systems is influenced by the chaotic dynamics
of the corresponding classical system, using coupled kicked tops. The linear
entropy for the subsystem (a kicked top) is employed as a measure of
entanglement. A perturbative formula for the entanglement production rate is
derived. The formula contains a correlation function that can be evaluated only
from the information of uncoupled tops. Using this expression and the
assumption that the correlation function decays exponentially which is
plausible for chaotic tops, it is shown that {\it the increment of the strength
of chaos does not enhance the production rate of entanglement} when the
coupling is weak enough and the subsystems (kicked tops) are strongly chaotic.
The result is confirmed by numerical experiments. The perturbative approach is
also applied to a weakly chaotic region, where tori and chaotic sea coexist in
the corresponding classical phase space, to reexamine a recent numerical study
that suggests an intimate relationship between the linear stability of the
corresponding classical trajectory and the entanglement production rate.Comment: 16 pages, 11 figures, submitted to Phys. Rev.
The Coherent State Representation of Quantum Fluctuations in the Early Universe
Using the squeezed state formalism the coherent state representation of
quantum fluctuations in an expanding universe is derived. It is shown that this
provides a useful alternative to the Wigner function as a phase space
representation of quantum fluctuations. The quantum to classical transition of
fluctuations is naturally implemented by decohering the density matrix in this
representation. The entropy of the decohered vacua is derived. It is shown that
the decoherence process breaks the physical equivalence between vacua that
differ by a coordinate dependent phase generated by a surface term in the
Lagrangian. In particular, scale invariant power spectra are only obtained for
a special choice of surface term.Comment: 25 pages in revtex 3. This version is completely revised with
corrections and significant new calculation
- âŠ