29,324 research outputs found
Electro-Mechanical Simulation of Switching Characteristics for Nanoelectromechanical Memory
The static switching properties and readout characteristics of proposed high-speed and nonvolatile nanoelectromechanical (NEM) memory devices are investigated By conducting a three-dimensional finite element mechanical simulation combined with an electrostatic analysis, we analyze the electromechanical switching operation of a mechanically bistable NEM floating gate by applying gate voltage. We show that switching voltage can be reduced to less than 10V by reducing the zero-bias displacement of the floating gate and optimizing the cavity structure to improve mechanical symmetry. We also analyze the electrical readout property of the NEM memory devices by combining the electromechanical simulation with a drift-diffusion analysis We demonstrate that the mechanically bistable states of the floating gate can be detected via the changes in drain current with an ON/OFF current ratio of about 3 x 10 (C) 2009 The Japan Society of Applied Physic
Inter-valley plasmons in graphene
The spectrum of two-dimensional (2D) plasma waves in graphene has been
recently studied in the Dirac fermion model. We take into account the whole
dispersion relation for graphene electrons in the tight binding approximation
and the local field effects in the electrodynamic response. Near the
wavevectors close to the corners of the hexagon-shaped Brillouin zone we found
new low-frequency 2D plasmon modes with a linear spectrum. These "inter-valley"
plasmon modes are related to the transitions between the two nearest Dirac
cones.Comment: 4 pages, 2 figures; submitted in PR
Approximations of singular vertex couplings in quantum graphs
We discuss approximations of the vertex coupling on a star-shaped quantum
graph of edges in the singular case when the wave functions are not
continuous at the vertex and no edge-permutation symmetry is present. It is
shown that the Cheon-Shigehara technique using interactions with
nonlinearly scaled couplings yields a -parameter family of boundary
conditions in the sense of norm resolvent topology. Moreover, using graphs with
additional edges one can approximate the -parameter family of
all time-reversal invariant couplings.Comment: LaTeX source file, 33 pages, with 3 eps figure
Recommended from our members
Re-Analysis of HFT Data Using the Apollo Lunar Surface Gravimeter Data
Introduction: The Apollo Passive Seismic Experiment (PSE) was carried out on Apollo 12, 14, 15 and 16. Network observations of four seismic stations were performed for five years from 1972 to 1977. The PSE was a successful mission that informed us of the lunar crustal thickness and seismic velocity structure of the Moon from direct observations of the lunar interior (e.g. [1]). However, the paucity of seismic stations and the limited number of usable seismic events have been a major problem of lunar seismology. An additional observation point enables us to expand the network and the observable area will expand accordingly. Using a data set called the Work Tape, Kawamura et al. (2008) [2] showed that the Lunar Surface Gravimeter (LSG) on Apollo 17 functioned as a seismograph.
With this additional seismic station, we tried the first seismic analysis using the LSG data
Recommended from our members
The Lunar Surface Gravimeter as a Lunar Seismograph
Introduction: The primary objective for the Lunar Surface Gravimeter (LSG) on Apollo 17 was to search for gravitational waves, but it failed in detecting them [1]. When the instrument was deployed on the Moon, the sensor beam could not be balanced in the proper equilibrium position. Consequently, the LSG was not able to function as originally designed. Lauderdale and Eichelman (1974) [1] concluded that “no provision has been made to supply data from the experiment to the National Space Science Data Center.” However, it was reported in Giganti et al. (1977) [2] that though they had not detected gravitational waves, after a series of reconfigurations the beam was recentered and the LSG gathered useful data. Besides the observation of gravitational waves, the LSG was also designed to observe seismic signals and tidal deformations [3]. According to Giganti et al. (1977) [2] LSG’s sensitivity covered the frequency range from 1~16Hz (Fig.1). There are several types of moonquakes reported, deep moonquakes, meteorite impacts, and high frequency teleseismic (HFT). Each of the moonquakes is known to have a resonant frequency around 1Hz and in addition, HFT has a predominant frequency around 10 Hz [4]. Therefore it is likely that the LSG was detecting the seismic events on the Moon. However, the LSG data have not been analyzed from a seismological point of view
Direct Observation of the Hyperfine Transition of the Ground State Positronium
We report the first direct measurement of the hyperfine transition of the
ground state positronium. The hyperfine structure between ortho-positronium and
para-positronium is about 203 GHz. We develop a new optical system to
accumulate about 10 kW power using a gyrotron, a mode converter, and a
Fabry-P\'{e}rot cavity. The hyperfine transition has been observed with a
significance of 5.4 standard deviations. The transition probability is measured
to be s for the first time, which
is in good agreement with the theoretical value of
s
- …