The static switching properties and readout characteristics of proposed high-speed and nonvolatile nanoelectromechanical (NEM) memory devices are investigated By conducting a three-dimensional finite element mechanical simulation combined with an electrostatic analysis, we analyze the electromechanical switching operation of a mechanically bistable NEM floating gate by applying gate voltage. We show that switching voltage can be reduced to less than 10V by reducing the zero-bias displacement of the floating gate and optimizing the cavity structure to improve mechanical symmetry. We also analyze the electrical readout property of the NEM memory devices by combining the electromechanical simulation with a drift-diffusion analysis We demonstrate that the mechanically bistable states of the floating gate can be detected via the changes in drain current with an ON/OFF current ratio of about 3 x 10 (C) 2009 The Japan Society of Applied Physic