16,877 research outputs found
Spinor model of a perfect fluid
Different characteristic of matter influencing the evolution of the Universe
has been simulated by means of a nonlinear spinor field. We have considered two
cases where the spinor field nonlinearity occurs either as a result of
self-action or due to the interaction with a scalar field.Comment: 5 pages, some misprints are corrected, some new expressions are adde
Recoil Ranges of Products from Reactions of Cu65 with 11-33 Mev He3 Ions
Recoil ranges of products from reactions copper 65 with 11-35 MeV helium 3 ion
Optical properties of random alloys : Application to Cu_{50}Au_{50} and Ni_{50}Pt_{50}
In an earlier paper [K. K. Saha and A. Mookerjee, Phys. Rev. B 70 (2004) (in
press) or, cond-mat/0403456] we had presented a formulation for the calculation
of the configuration-averaged optical conductivity in random alloys. Our
formulation is based on the augmented-space theorem introduced by one of us [A.
Mookerjee, J. Phys. C: Solid State Phys. 6, 1340 (1973)]. In this communication
we shall combine our formulation with the tight-binding linear muffin-tin
orbitals (TB-LMTO) technique to study the optical conductivities of two alloys
Cu_{50}Au_{50} and Ni_{50}Pt_{50}.Comment: 5 pages, 7 figure
Interacting spinor and scalar fields in Bianchi type-I Universe filled with viscous fluid: exact and numerical solutions
We consider a self-consistent system of spinor and scalar fields within the
framework of a Bianchi type I gravitational field filled with viscous fluid in
presence of a term. Exact self-consistent solutions to the
corresponding spinor, scalar and BI gravitational field equations are obtained
in terms of , where is the volume scale of BI universe. System of
equations for and \ve, where \ve is the energy of the viscous fluid,
is deduced. Some special cases allowing exact solutions are thoroughly studied.Comment: 18 pages, 6 figure
Metal-Free Modified Boron Nitride for Enhanced CO2 Capture
Porous boron nitride is a new class of solid adsorbent with applications in CO2 capture. In order to further enhance the adsorption capacities of materials, new strategies such as porosity tuning, element doping and surface modification have been taken into account. In this work, metal-free modification of porous boron nitride (BN) has been prepared by a structure directing agent via simple heat treatment under N2 flow. We have demonstrated that textural properties of BN play a pivotal role in CO2 adsorption behavior. Therefore, addition of a triblock copolymer surfactant (P123) has been adopted to improve the pore ordering and textural properties of porous BN and its influence on the morphological and structural properties of pristine BN has been characterized. The obtained BN-P123 exhibits a high surface area of 476 m2/g, a large pore volume of 0.83 cm3/g with an abundance of micropores. More importantly, after modification with P123 copolymer, the capacity of pure CO2 on porous BN has improved by about 34.5% compared to pristine BN (2.69 mmol/g for BN-P123 vs. 2.00 mmol/g for pristine BN under ambient condition). The unique characteristics of boron nitride opens up new routes for designing porous BN, which could be employed for optimizing CO2 adsorption
- …