349 research outputs found
Time-Energy coherent states and adiabatic scattering
Coherent states in the time-energy plane provide a natural basis to study
adiabatic scattering. We relate the (diagonal) matrix elements of the
scattering matrix in this basis with the frozen on-shell scattering data. We
describe an exactly solvable model, and show that the error in the frozen data
cannot be estimated by the Wigner time delay alone. We introduce the notion of
energy shift, a conjugate of Wigner time delay, and show that for incoming
state the energy shift determines the outgoing state.Comment: 11 pages, 1 figur
Fredholm Indices and the Phase Diagram of Quantum Hall Systems
The quantized Hall conductance in a plateau is related to the index of a
Fredholm operator. In this paper we describe the generic ``phase diagram'' of
Fredholm indices associated with bounded and Toeplitz operators. We discuss the
possible relevance of our results to the phase diagram of disordered integer
quantum Hall systems.Comment: 25 pages, including 7 embedded figures. The mathematical content of
this paper is similar to our previous paper math-ph/0003003, but the physical
analysis is ne
Topological Phases near a Triple Degeneracy
We study the pattern of three state topological phases that appear in systems
with real Hamiltonians and wave functions. We give a simple geometric
construction for representing these phases. We then apply our results to
understand previous work on three state phases. We point out that the ``mirror
symmetry'' of wave functions noticed in microwave experiments can be simply
understood in our framework.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let
The geometry of entanglement: metrics, connections and the geometric phase
Using the natural connection equivalent to the SU(2) Yang-Mills instanton on
the quaternionic Hopf fibration of over the quaternionic projective space
with an fiber the geometry of
entanglement for two qubits is investigated. The relationship between base and
fiber i.e. the twisting of the bundle corresponds to the entanglement of the
qubits. The measure of entanglement can be related to the length of the
shortest geodesic with respect to the Mannoury-Fubini-Study metric on between an arbitrary entangled state, and the separable state nearest to
it. Using this result an interpretation of the standard Schmidt decomposition
in geometric terms is given. Schmidt states are the nearest and furthest
separable ones lying on, or the ones obtained by parallel transport along the
geodesic passing through the entangled state. Some examples showing the
correspondence between the anolonomy of the connection and entanglement via the
geometric phase is shown. Connections with important notions like the
Bures-metric, Uhlmann's connection, the hyperbolic structure for density
matrices and anholonomic quantum computation are also pointed out.Comment: 42 page
Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees
The radiation-attenuated Schistosoma mansoni vaccine is highly effective in rodents and primates but has never been tested in humans, primarily for safety reasons. To strengthen its status as a paradigm for a human recombinant antigen vaccine, we have undertaken a small-scale vaccination and challenge experiment in chimpanzees (Pan troglodytes). Immunological, clinical, and parasitological parameters were measured in three animals after multiple vaccinations, together with three controls, during the acute and chronic stages of challenge infection up to chemotherapeutic cure. Vaccination induced a strong in vitro proliferative response and early gamma interferon production, but type 2 cytokines were dominant by the time of challenge. The controls showed little response to challenge infection before the acute stage of the disease, initiated by egg deposition. In contrast, the responses of vaccinated animals were muted throughout the challenge period. Vaccination also induced parasite-specific immunoglobulin M (IgM) and IgG, which reached high levels at the time of challenge, while in control animals levels did not rise markedly before egg deposition. The protective effects of vaccination were manifested as an amelioration of acute disease and overall morbidity, revealed by differences in gamma-glutamyl transferase level, leukocytosis, eosinophilia, and hematocrit. Moreover, vaccinated chimpanzees had a 46% lower level of circulating cathodic antigen and a 38% reduction in fecal egg output, compared to controls, during the chronic phase of infection
Evorus: A Crowd-powered Conversational Assistant Built to Automate Itself Over Time
Crowd-powered conversational assistants have been shown to be more robust
than automated systems, but do so at the cost of higher response latency and
monetary costs. A promising direction is to combine the two approaches for high
quality, low latency, and low cost solutions. In this paper, we introduce
Evorus, a crowd-powered conversational assistant built to automate itself over
time by (i) allowing new chatbots to be easily integrated to automate more
scenarios, (ii) reusing prior crowd answers, and (iii) learning to
automatically approve response candidates. Our 5-month-long deployment with 80
participants and 281 conversations shows that Evorus can automate itself
without compromising conversation quality. Crowd-AI architectures have long
been proposed as a way to reduce cost and latency for crowd-powered systems;
Evorus demonstrates how automation can be introduced successfully in a deployed
system. Its architecture allows future researchers to make further innovation
on the underlying automated components in the context of a deployed open domain
dialog system.Comment: 10 pages. To appear in the Proceedings of the Conference on Human
Factors in Computing Systems 2018 (CHI'18
Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C~279
Of the blazars detected by EGRET in GeV gamma rays, 3C 279 is not only the
best-observed by EGRET, but also one of the best-monitored at lower
frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma
rays, from the time intervals of EGRET observations. Although some of the data
have appeared in previous publications, most are new, including data taken
during the high states in early 1999 and early 2000. All of the spectra show
substantial gamma-ray contribution to the total luminosity of the object; in a
high state, the gamma-ray luminosity dominates over that at all other
frequencies by a factor of more than 10. There is no clear pattern of time
correlation; different bands do not always rise and fall together, even in the
optical, X-ray, and gamma-ray bands.
The spectra are modeled using a leptonic jet, with combined synchrotron
self-Compton + external Compton gamma-ray production. Spectral variability of
3C 279 is consistent with variations of the bulk Lorentz factor of the jet,
accompanied by changes in the spectral shape of the electron distribution. Our
modeling results are consistent with the UV spectrum of 3C 279 being dominated
by accretion disk radiation during times of low gamma-ray intensity.Comment: 39 pages including 13 figures; data tables not included (see ApJ web
version or contact author
Another look at the BL Lacertae flux and spectral variability
The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope
(WEBT) monitored BL Lacertae in 2008-2009 at radio, near-IR, and optical
frequencies. During this period, high-energy observations were performed by
XMM-Newton, Swift, and Fermi. We analyse these data with particular attention
to the calibration of Swift UV data, and apply a helical jet model to interpret
the source broad-band variability. The GASP-WEBT observations show an optical
flare in 2008 February-March, and oscillations of several tenths of mag on a
few-day time scale afterwards. The radio flux is only mildly variable. The UV
data from both XMM-Newton and Swift seem to confirm a UV excess that is likely
caused by thermal emission from the accretion disc. The X-ray data from
XMM-Newton indicate a strongly concave spectrum, as well as moderate flux
variability on an hour time scale. The Swift X-ray data reveal fast (interday)
flux changes, not correlated with those observed at lower energies. We compare
the spectral energy distribution (SED) corresponding to the 2008 low-brightness
state, which was characterised by a synchrotron dominance, to the 1997 outburst
state, where the inverse-Compton emission was prevailing. A fit with an
inhomogeneous helical jet model suggests that two synchrotron components are at
work with their self inverse-Compton emission. Most likely, they represent the
radiation from two distinct emitting regions in the jet. We show that the
difference between the source SEDs in 2008 and 1997 can be explained in terms
of pure geometrical variations. The outburst state occurred when the
jet-emitting regions were better aligned with the line of sight, producing an
increase of the Doppler beaming factor. Our analysis demonstrates that the jet
geometry can play an extremely important role in the BL Lacertae flux and
spectral variability.Comment: 12 pages, 10 figures, accepted for publication in A&
Multiwavelength Observations of the Blazar Mrk 421 in December 2002 and January 2003
We report on a multiwavelength campaign on the TeV gamma-ray blazar Markarian
(Mrk) 421 performed during December 2002 and January 2003. These target of
opportunity observations were initiated by the detection of X-ray and TeV
gamma-ray flares with the All Sky Monitor (ASM) on board the Rossi X-ray Timing
Explorer (RXTE) and the 10 m Whipple gamma-ray telescope.The campaign included
observational coverage in the radio (University of Michigan Radio Astronomy
Observatory), optical (Boltwood, La Palma KVA 0.6m, WIYN 0.9m), X-ray (RXTE
pointed telescopes), and TeV gamma-ray (Whipple and HEGRA) bands.
At TeV energies, the observations revealed several flares at intermediate
flux levels, peaking between 1 and 1.5 times the flux from the Crab Nebula.
While the time averaged spectrum can be fitted with a single power law of
photon index Gamma =2.8, we find some evidence for spectral variability.
Confirming earlier results, the campaign reveals a rather loose correlation
between the X-ray and TeV gamma-ray fluxes. In one case, a very strong X-ray
flare is not accompanied by a comparable TeV gamma-ray flare. Although the
source flux was variable in the optical and radio bands, the sparse sampling of
the optical and radio light curves does not allow us to study the correlation
properties in detail.
We present a simple analysis of the data with a synchrotron-self Compton
model, emphasizing that models with very high Doppler factors and low magnetic
fields can describe the data.Comment: Accepted for publication in the Astrophysical Journa
A Multi-wavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution
We report results from a multi-wavelength monitoring campaign on Mrk 421 over
the period of 2003-2004. The source was observed simultaneously at TeV and
X-ray energies, with supporting observations frequently carried out at optical
and radio wavelengths. The large amount of simultaneous data has allowed us to
examine the variability of Mrk 421 in detail. The variabilities are generally
correlated between the X-ray and gamma-ray bands, although the correlation
appears to be fairly loose. The light curves show the presence of flares with
varying amplitudes on a wide range of timescales both at X-ray and TeV
energies. Of particular interest is the presence of TeV flares that have no
coincident counterparts at longer wavelengths, because the phenomenon seems
difficult to understand in the context of the proposed emission models for TeV
blazars. We have also found that the TeV flux reached its peak days before the
X-ray flux during a giant flare in 2004. Such a difference in the development
of the flare presents a further challenge to the emission models. Mrk 421
varied much less at optical and radio wavelengths. Surprisingly, the normalized
variability amplitude in optical seems to be comparable to that in radio,
perhaps suggesting the presence of different populations of emitting electrons
in the jet. The spectral energy distribution (SED) of Mrk 421 is seen to vary
with flux, with the two characteristic peaks moving toward higher energies at
higher fluxes. We have failed to fit the measured SEDs with a one-zone SSC
model; introducing additional zones greatly improves the fits. We have derived
constraints on the physical properties of the X-ray/gamma-ray flaring regions
from the observed variability (and SED) of the source. The implications of the
results are discussed. (Abridged)Comment: 32 pages, 12 figures, to appear in Ap
- …