2,379 research outputs found

    Influence of geometry, elasticity properties and boundary conditions on the Mode I purity in sandwich composites

    Get PDF
    The present work addresses the problem of skin/core debonding in sandwich materials. The main goal is to carry out parametric analyses for studying the influence of various materials, geometrical parameters and boundary conditions of sandwich fracture specimens such as a Single Cantilever Beam and a Double Cantilever Beam on the skin/core opening (KI ) and shearing (KII ) modes. The analyses have been performed by means of fracture mechanics tools implemented into the commercial finite element code ABAQUS™. A two-dimensional model of the fracture specimens has been developed with plane strain finite elements. The dependence of the stress intensity factors in the sandwich specimens on the skin thickness, ratio between the Young’s moduli of the skin and core materials and boundary conditions imposed on the specimens has been examined under quasi-static loading by using the interaction integral method

    The Flp double cross system a simple efficient procedure for cloning DNA fragments

    Get PDF
    BACKGROUND: While conventional cloning methods using restriction enzymes and polynucleotide ligase are adequate for most DNAs, fragments made by the polymerase chain reaction are difficult to clone because the amplifying DNA polymerase tends to add untemplated nucleotides to the 3'-termini of the amplified strands. Conservative site-specific recombinases offer an efficient alternative to conventional cloning methods. RESULTS: In this paper I describe the use of the Flp site-specific recombinase for cloning PCR-amplified fragments. A DNA fragment is amplified with primers that contain at their ends inverted target sequences for Flp. Flp readily recombines these fragments in vitro into a vector that also contains two inverted Flp target sequences surrounding the α-complementing region of the lacZ gene of E. coli. The recombinants are conveniently detected as white colonies by the familiar blue/white screening test for lacZ activity. A useful feature of the system is that both orientations of the inserted DNA are usually obtained. If the recipient vector is cut between the two inverted Flp targets, Flp "heals" the double-strand break by inserting a linear fragment flanked by Flp targets. CONCLUSION: This system ("The Flp Double Cross System") should be useful for cloning multiple PCR fragments into many sites in several vectors. It has certain advantages over other available recombinase-based cloning procedures

    Radio light curves during the passage of cloud G2 near Sgr A*

    Full text link
    We calculate radio light curves produced by the bow shock that is likely to form in front of the G2 cloud when it penetrates the accretion disk of Sgr A*. The shock acceleration of the radio-emitting electrons is captured self-consistently by means of first-principles particle-in-cell simulations. We show that the radio luminosity is expected to reach maximum in early 2013, roughly a month after the bow shock crosses the orbit pericenter. We estimate the peak radio flux at 1.4 GHz to be 1.4 - 22 Jy depending on the assumed orbit orientation and parameters. We show that the most promising frequencies for radio observations are in the 0.1<nu<1 GHz range, for which the bow shock emission will be much stronger than the intrinsic radio flux for all the models considered.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Dirac fermions at the H point of graphite: Magneto-transmission studies

    Full text link
    We report on far infrared magneto-transmission measurements on a thin graphite sample prepared by exfoliation of highly oriented pyrolytic graphite. In magnetic field, absorption lines exhibiting a blue-shift proportional to sqrtB are observed. This is a fingerprint for massless Dirac holes at the H point in bulk graphite. The Fermi velocity is found to be c*=1.02x10^6 m/s and the pseudogap at the H point is estimated to be below 10 meV. Although the holes behave to a first approximation as a strictly 2D gas of Dirac fermions, the full 3D band structure has to be taken into account to explain all the observed spectral features.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Thickness dependence of magnetic properties of (Ga,Mn)As

    Full text link
    We report on a monotonic reduction of Curie temperature in dilute ferromagnetic semiconductor (Ga,Mn)As upon a well controlled chemical-etching/oxidizing thinning from 15 nm down to complete removal of the ferro- magnetic response. The effect already starts at the very beginning of the thinning process and is accompanied by the spin reorientation transition of the in-plane uniaxial anisotropy. We postulate that a negative gradient along the growth direction of self-compensating defects (Mn interstitial) and the presence of surface donor traps gives quantitative account on these effects within the p-d mean field Zener model with adequate mod- ifications to take a nonuniform distribution of holes and Mn cations into account. The described here effects are of practical importance for employing thin and ultrathin layers of (Ga,Mn)As or relative compounds in concept spintronics devices, like resonant tunneling devices in particular.Comment: 4 pages, 4 figures and supplementary information 2 pages, 1 figur

    Weak localization in ferromagnetic (Ga,Mn)As nanostructures

    Get PDF
    We report on the observation of weak localization in arrays of (Ga,Mn)As nanowires at millikelvin temperatures. The corresponding phase coherence length is typically between 100 nm and 200 nm at 20 mK. Strong spin-orbit interaction in the material is manifested by a weak anti-localization correction around zero magnetic field.Comment: 5 pages, 3 figure

    Magnetic properties of GaMnAs single layers and GaInMnAs superlattices investigated at low temperature and high magnetic field

    Full text link
    Magnetotransport properties of GaMnAs single layers and InGaMnAs/InGaAs superlattice structures were investigated at temperatures from 4 K to 300 K and magnetic fields up to 23 T to study the influence of carriers confinement through different structures. Both single layers and superlattice structures show paramagnetic-to-ferromagnetic phase transition. In GaMnAs/InGaAs superlattice beside the Curie temperature (Tc ~ 40 K), a new phase transition is observed close to 13 K.Comment: 8 pages, 5 figures, Proceedings of the XXXII International School on the Physics of Semiconducting Compounds, Jaszowiec 2003, Polan
    corecore