8,536 research outputs found

    The String Tension in Two Dimensional Gauge Theories

    Full text link
    We review and elaborate on properties of the string tension in two-dimensional gauge theories. The first model we consider is massive QED in the m≪em\ll e limit. We evaluate the leading string tension both in the fermionic and bosonized descriptions. We discuss the next to leading corrections in m/em/e. The next-to-leading terms in the long distance behavior of the quark-antiquark potential, are evaluated in a certain region of external versus dynamical charges. The finite temperature behavior is also determined. In QCD2QCD_2 we review the results for the string tension of quarks in cases with dynamical quarks in the fundamental, adjoint, symmetric and antisymmetric representations. The screening nature of SYM2SYM_2 is re-derived.Comment: 25 pages, Latex. v2: several changes, mainly in section

    QED on a momentum lattice

    Full text link
    We investigate the possibility of doing momentum space lattice simulations as an alternative to the conventional method. The procedure is introduced and tested for quenched QED2 and quenched QED3. Interesting physical applications to unquenched QED3 and quenched QED4 are also briefly discussed.Comment: 3 pages, To appear in the proceedings of the LATTICE'93 conference, ILL-(TH)-93-2

    Chiral properties of the fixed point action of the Schwinger model

    Get PDF
    We study the spectrum properties for a recently constructed fixed point lattice Dirac operator. We also consider the problem of the extraction of the fermion condensate, both by direct computation, and through the Banks-Casher formula by analyzing the density of eigenvalues of a redefined antihermitean lattice Dirac operator.Comment: 14 pages (LaTeX), 4 figures (EPS

    The Gauge Fields and Ghosts in Rindler Space

    Full text link
    We consider 2d Maxwell system defined on the Rindler space with metric ds^2=\exp(2a\xi)\cdot(d\eta^2-d\xi^2) with the goal to study the dynamics of the ghosts. We find an extra contribution to the vacuum energy in comparison with Minkowski space time with metric ds^2= dt^2-dx^2. This extra contribution can be traced to the unphysical degrees of freedom (in Minkowski space). The technical reason for this effect to occur is the property of Bogolubov's coefficients which mix the positive and negative frequencies modes. The corresponding mixture can not be avoided because the projections to positive -frequency modes with respect to Minkowski time t and positive -frequency modes with respect to the Rindler observer's proper time \eta are not equivalent. The exact cancellation of unphysical degrees of freedom which is maintained in Minkowski space can not hold in the Rindler space. In BRST approach this effect manifests itself as the presence of BRST charge density in L and R parts. An inertial observer in Minkowski vacuum |0> observes a universe with no net BRST charge only as a result of cancellation between the two. However, the Rindler observers who do not ever have access to the entire space time would see a net BRST charge. In this respect the effect resembles the Unruh effect. The effect is infrared (IR) in nature, and sensitive to the horizon and/or boundaries. We interpret the extra energy as the formation of the "ghost condensate" when the ghost degrees of freedom can not propagate, but nevertheless do contribute to the vacuum energy. Exact computations in this simple 2d model support the claim made in [1] that the ghost contribution might be responsible for the observed dark energy in 4d FLRW universe.Comment: Final version to appear in Phys. Rev. D. Comments on relation with energy momentum computations and few new refs are adde

    Interpretations of the Accelerating Universe

    Full text link
    It is generally argued that the present cosmological observations support the accelerating models of the universe, as driven by the cosmological constant or `dark energy'. We argue here that an alternative model of the universe is possible which explains the current observations of the universe. We demonstrate this with a reinterpretation of the magnitude-redshift relation for Type Ia supernovae, since this was the test that gave a spurt to the current trend in favour of the cosmological constant.Comment: 12 pages including 2 figures, minor revision, references added, a paragraph on the interpretation of the CMB anisotropy in the QSSC added in conclusion, general results unchanged. To appear in the October 2002 issue of the "Publications of the Astronmical Society of the Pacific

    The Dyer-Roeder distance in quintessence cosmology and the estimation of H_0 through time-delays

    Get PDF
    We calculate analytically and numerically the Dyer-Roeder distance in perfect fluid quintessence models and give an accurate fit to the numerical solutions for all the values of the density parameter and the quintessence equation of state. Then we apply our solutions to the estimation of H0H_{0} from multiple image time delays and find that the inclusion of quintessence modifies sensibly the likelihood distribution of H0H_{0}, generally reducing the best estimate with respect to a pure cosmological constant. Marginalizing over the other parameters (Ωm\Omega_{m} and the quintessence equation of state), we obtain H0=71±6H_{0}=71\pm 6 km/sec/Mpc for an empty beam and H0=64±4H_{0}=64\pm 4 km/sec/Mpc for a filled beam. We also discuss the future prospects for distinguishing quintessence from a cosmological constant with time delays.Comment: 10 pages, 6 figures, submitted to MNRA

    Template coexistence in prebiotic vesicle models

    Full text link
    The coexistence of distinct templates is a common feature of the diverse proposals advanced to resolve the information crisis of prebiotic evolution. However, achieving robust template coexistence turned out to be such a difficult demand that only a class of models, the so-called package models, seems to have met it so far. Here we apply Wright's Island formulation of group selection to study the conditions for the coexistence of two distinct template types confined in packages (vesicles) of finite capacity. In particular, we show how selection acting at the level of the vesicles can neutralize the pressures towards the fixation of any one of the template types (random drift) and of the type with higher replication rate (deterministic competition). We give emphasis to the role of the distinct generation times of templates and vesicles as yet another obstacle to coexistence.Comment: 7 pages, 8 figure

    Akns Hierarchy, Self-Similarity, String Equations and the Grassmannian

    Get PDF
    In this paper the Galilean, scaling and translational self--similarity conditions for the AKNS hierarchy are analysed geometrically in terms of the infinite dimensional Grassmannian. The string equations found recently by non--scaling limit analysis of the one--matrix model are shown to correspond to the Galilean self--similarity condition for this hierarchy. We describe, in terms of the initial data for the zero--curvature 1--form of the AKNS hierarchy, the moduli space of these self--similar solutions in the Sato Grassmannian. As a byproduct we characterize the points in the Segal--Wilson Grassmannian corresponding to the Sachs rational solutions of the AKNS equation and to the Nakamura--Hirota rational solutions of the NLS equation. An explicit 1--parameter family of Galilean self--similar solutions of the AKNS equation and the associated solution to the NLS equation is determined.Comment: 25 pages in AMS-LaTe

    Sum Rules for the Dirac Spectrum of the Schwinger Model

    Full text link
    The inverse eigenvalues of the Dirac operator in the Schwinger model satisfy the same Leutwyler-Smilga sum rules as in the case of QCD with one flavor. In this paper we give a microscopic derivation of these sum rules in the sector of arbitrary topological charge. We show that the sum rules can be obtained from the clustering property of the scalar correlation functions. This argument also holds for other theories with a mass gap and broken chiral symmetry such as QCD with one flavor. For QCD with several flavors a modified clustering property is derived from the low energy chiral Lagrangian. We also obtain sum rules for a fixed external gauge field and show their relation with the bosonized version of the Schwinger model. In the sector of topological charge ν\nu the sum rules are consistent with a shift of the Dirac spectrum away from zero by ν/2\nu/2 average level spacings. This shift is also required to obtain a nonzero chiral condensate in the massless limit. Finally, we discuss the Dirac spectrum for a closely related two-dimensional theory for which the gauge field action is quadratic in the the gauge fields. This theory of so called random Dirac fermions has been discussed extensively in the context of the quantum Hall effect and d-wave super-conductors.Comment: 41 pages, Late
    • …
    corecore