257 research outputs found

    Mass spectrometry in the diagnosis of thyroid disease and in the study of thyroid hormone metabolism

    Get PDF
    The importance of thyroid hormones in the regulation of development, growth, and energy metabolism is well known. Over the last decades, mass spectrometry has been extensively used to investigate thyroid hormone metabolism and to discover and characterize new molecules involved in thyroid hormones production, such as thyrotropin-releasing hormone. In the earlier period, the quantification methods, usually based on gas chromatography-mass spectrometry, were complicated and time consuming. They were mainly focused on basic research, and were not suitable for clinical diagnostics on a routine basis. The development of the modern mass spectrometers, mainly coupled to liquid chromatography, enabled simpler sample preparation procedures, and the accurate quantification of thyroid hormones, of their precursors, and of their metabolites in biological fluids, tissues, and cells became feasible. Nowadays, molecules of physiological and pathological interest can be assayed also for diagnostic purposes on a routine basis, and mass spectrometry is slowly entering the clinical laboratory. This review takes stock of the advancements in the field of thyroid metabolism that were carried out with mass spectrometry, with special focus on the use of this technique for the quantification of molecules involved in thyroid diseases

    Applications of artificial intelligence-based models in vulnerable carotid plaque

    Get PDF
    Carotid atherosclerotic disease is a widely acknowledged risk factor for ischemic stroke, making it a major concern on a global scale. To alleviate the socio-economic impact of carotid atherosclerotic disease, crucial objectives include prioritizing prevention efforts and early detection. So far, the degree of carotid stenosis has been regarded as the primary parameter for risk assessment and determining appropriate therapeutic interventions. Histopathological and imaging-based studies demonstrated important differences in the risk of cardiovascular events given a similar degree of luminal stenosis, identifying plaque structure and composition as key determinants of either plaque vulnerability or stability. The application of Artificial Intelligence (AI)-based techniques to carotid imaging can offer several solutions for tissue characterization and classification. This review aims to present a comprehensive overview of the main concepts related to AI. Additionally, we review the existing literature on AI-based models in ultrasound (US), computed tomography (CT), and Magnetic Resonance Imaging (MRI) for vulnerable plaque detection, and we finally examine the advantages and limitations of these AI approaches

    Atrial and Ventricular Involvement in Acute Myocarditis Patients with Preserved Ejection Fraction: A Single-Center Cardiovascular Magnetic Resonance Study

    Get PDF
    Cardiac magnetic resonance (CMR) is commonly employed to confirm the diagnosis of acute myocarditis (AM). However, the impact of atrial and ventricular function in AM patients with preserved ejection fraction (EF) deserves further investigation. Therefore, the aim of this study was to explore the incremental diagnostic value of combining atrial and strain functions using CMR in patients with AM and preserved EF. This retrospective study collected CMR scans of 126 consecutive patients with AM (meeting the Lake Louise criteria) and with preserved EF, as well as 52 age- and sex-matched control subjects. Left atrial (LA) and left ventricular (LV) strain functions were assessed using conventional cine-SSFP sequences. In patients with AM and preserved EF, impaired ventricular and atrial strain functions were observed compared to control subjects. These impairments remained significant even in multivariable analysis. The combined model of atrial and ventricular functions proved to be the most effective in distinguishing AM patients with preserved ejection fraction from control subjects, achieving an area under the curve of 0.77 and showing a significant improvement in the likelihood ratio. These findings suggest that a combined analysis of both atrial and ventricular functions may improve the diagnostic accuracy for patients with AM and preserved EF

    A new photophysics for 2D and 3D lead halide perovskites: Polaron plasma in equilibrium with bright excitons

    Get PDF
    Rapid advances in perovskite photovoltaics have produced efficient solar cells, with stability and duration improving thanks to variations in materials composition, including the use of layered 2D perovskites. A major reason for the success of perovskite photovoltaics is the presence of free carriers as majority optical excitations in 3D materials at room temperature. On the other hand, the current understanding is that in 2D perovskites or at cryogenic temperatures insulating bound excitons form, which need to be split in solar cells and are not beneficial to photoconversion. Here we apply a tandem spectroscopy technique that combines ultrafast photoluminescence and differential transmission to demonstrate a plasma of unbound charge carriers in chemical equilibrium with a minority phase of light-emitting excitons, even in 2D perovskites and at cryogenic temperatures. We validate the technique with 3D perovskites and investigate 2D compounds basded on both Pb and Sn as metal cation. The underlying photophysics is interpreted as formation of large polarons, charge carriers coupled to lattice deformations, in place of excitons. A conductive polaron plasma foresees novel mechanisms for LEDs and lasers, as well as a prominent role for 2D perovskites in photovoltaics

    Atrial and Ventricular Strain Imaging Using CMR in the Prediction of Ventricular Arrhythmia in Patients with Myocarditis

    Get PDF
    (1) Objective: Myocarditis can be associated with ventricular arrhythmia (VA), individual non-invasive risk stratification through cardiovascular magnetic resonance (CMR) is of great clinical significance. Our study aimed to explore whether left atrial (LA) and left ventricle (LV) myocardial strain serve as independent predictors of VA in patients with myocarditis. (2) Methods: This retrospective study evaluated CMR scans in 141 consecutive patients diagnosed with myocarditis based on the updated Lake Louise criteria (29 females, mean age 41 ± 20). The primary endpoint was VA; this encompassed ventricular fibrillation, sustained ventricular tachycardia, nonsustained ventricular tachycardia, and frequent premature ventricular complexes. LA and LV strain function were performed on conventional cine SSFP sequences. (3) Results: After a median follow-up time of 23 months (interquartile range (18–30)), 17 patients with acute myocarditis reached the primary endpoint. In the multivariable Cox regression analysis, LA reservoir (hazard ratio [HR] and 95% confidence interval [CI]: 0.93 [0.87–0.99], p = 0.02), LA booster (0.87 95% CI [0.76–0.99], p = 0.04), LV global longitudinal (1.26 95% CI [1.02–1.55], p = 0.03), circumferential (1.37 95% CI [1.08–1.73], p = 0.008), and radial strain (0.89 95% CI [0.80–0.98], p = 0.01) were all independent determinants of VA. Patients with LV global circumferential strain &gt; −13.3% exhibited worse event-free survival compared to those with values ≤ −13.3% (p &lt; 0.0001). (4) Conclusions: LA and LV strain mechanism on CMR are independently associated with VA events in patients with myocarditis, independent to LV ejection fraction, and late gadolinium enhancement location. Incorporating myocardial strain parameters into the management of myocarditis may improve risk stratification.</p
    • …
    corecore