75 research outputs found

    An AFM study of solid-phase bilayers of unsaturated PC lipids and the lateral distribution of the transmembrane model peptide WALP23 in these bilayers

    Get PDF
    An altered lipid packing can have a large influence on the properties of the membrane and the lateral distribution of proteins and/or peptides that are associated with the bilayer. Here, it is shown by contact-mode atomic force microscopy that the surface topography of solid-phase bilayers of PC lipids with an unsaturated cis bond in their acyl chains shows surfaces with a large number of line-type packing defects, in contrast to the much smoother surfaces observed for saturated PC lipids. Di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC (POPC) were used. Next, the influence of an altered lipid environment on the lateral distribution of the single α-helical model peptide WALP23 was studied by incorporating the peptide in the bilayers of di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC unsaturated lipids. The presence of WALP23 leads to an increase in the number of packing defects but does not lead to the formation of the striated domains that were previously observed in bilayers of saturated PC lipids and WALP. This is ascribed to the less efficient lateral lipid packing of the unsaturated lipids, while the increase in packing defects is probably an indirect effect of the peptide. Finally, the fact that an altered lipid packing affects the distribution of WALP23 is also confirmed in an additional experiment where the solvent TFE (2,2,2-trifluorethanol) is added to bilayers of di-16:0-PC/WALP23. At 3.5 vol% TFE, the previous striated ordering of the peptide is abolished and replaced by loose lines

    Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma is a severe pediatric tumor, histologically characterised by a variety of cellular phenotypes. One of the pharmacological approaches to neuroblastoma is the treatment with retinoic acid. The mechanism of action of retinoic acid is still unclear, and the development of resistance to this differentiating agent is a great therapy problem.</p> <p>Doublecortin, a microtubule-associated protein involved in neuronal migration, has recently been proposed as a molecular marker for the detection of minimal residual disease in human neuroblastoma. Nevertheless, no information is available on the expression of doublecortin in the different cell-types composing human neuroblastoma, its correlation with neuroblastoma cell motility and invasiveness, and the possible modulations exerted by retinoic acid treatment.</p> <p>Methods</p> <p>We analysed by immunofluorescence and by Western blot analysis the presence of doublecortin, lissencephaly-1 (another protein involved in neuronal migration) and of two intermediate filaments proteins, vimentin and neurofilament-68, in SK-N-SH human neuroblastoma cell line both in control conditions and under retinoic acid treatment. Migration and cell invasiveness studies were performed by wound scratch test and a modified microchemotaxis assay, respectively.</p> <p>Results</p> <p>Doublecortin is expressed in two cell subtypes considered to be the more aggressive and that show high migration capability and invasiveness.</p> <p>Vimentin expression is excluded by these cells, while lissencephaly-1 and neurofilaments-68 are immunodetected in all the cell subtypes of the SK-N-SH cell line. Treatment with retinoic acid reduces cell migration and invasiveness, down regulates doublecortin and lissencephaly-1 expression and up regulates neurofilament-68 expression. However, some cells that escape from retinoic acid action maintain migration capability and invasiveness and express doublecortin.</p> <p>Conclusion</p> <p>a) Doublecortin is expressed in human neuroblastoma cells that show high motility and invasiveness;</p> <p>b) Retinoic acid treatment reduces migration and invasiveness of the more aggressive cell components of SK-N-SH cells;</p> <p>c) The cells that after retinoic acid exposure show migration and invasive capability may be identified on the basis of doublecortin expression.</p

    An alginate-layer technique for culture of Brassica oleracea L. protoplasts

    Get PDF
    Ten accessions belonging to the Brassica oleracea subspecies alba and rubra, and to B. oleracea var. sabauda were used in this study. Protoplasts were isolated from leaves and hypocotyls of in vitro grown plants. The influence of selected factors on the yield, viability, and mitotic activity of protoplasts immobilized in calcium alginate layers was investigated. The efficiency of protoplast isolation from hypocotyls was lower (0.7 ± 0.1 × 106 ml−1) than for protoplasts isolated from leaf mesophyll tissue (2 ± 0.1 × 106 ml−1). High (70–90%) viabilities of immobilized protoplasts were recorded, independent of the explant sources. The highest proportion of protoplasts undergoing divisions was noted for cv. Reball F1, both from mesophyll (29.8 ± 2.2%) and hypocotyl (17.5 ± 0.3%) tissues. Developed colonies of callus tissue were subjected to regeneration and as a result plants from six accessions were obtained

    Subjecting Elite Athletes to Inspiratory Breathing Load Reveals Behavioral and Neural Signatures of Optimal Performers in Extreme Environments

    Get PDF
    Background: It is unclear whether and how elite athletes process physiological or psychological challenges differently than healthy comparison subjects. In general, individuals optimize exercise level as it relates to differences between expected and experienced exertion, which can be conceptualized as a body prediction error. The process of computing a body prediction error involves the insular cortex, which is important for interoception, i.e. the sense of the physiological condition of the body. Thus, optimal performance may be related to efficient minimization of the body prediction error. We examined the hypothesis that elite athletes, compared to control subjects, show attenuated insular cortex activation during an aversive interoceptive challenge. Methodology/Principal Findings: Elite adventure racers (n = 10) and healthy volunteers (n = 11) performed a continuous performance task with varying degrees of a non-hypercapnic breathing load while undergoing functional magnetic resonance imaging. The results indicate that (1) non-hypercapnic inspiratory breathing load is an aversive experience associated with a profound activation of a distributed set of brain areas including bilateral insula, dorsolateral prefrontal cortex and anterior cingulated; (2) adventure racers relative to comparison subjects show greater accuracy on the continuous performance task during the aversive interoceptive condition; and (3) adventure racers show an attenuated right insula cortex response during and following the aversive interoceptive condition of non-hypercapnic inspirator

    Audiotactile interactions in temporal perception

    Full text link

    Wellbeing and resilience:Mechanisms of transmission of health and risk in parents with complex mental health problems and their offspring—The WARM Study

    Get PDF
    The WARM study is a longitudinal cohort study following infants of mothers with schizophrenia, bipolar disorder, depression and control from pregnancy to infant 1 year of age. Background: Children of parents diagnosed with complex mental health problems including schizophrenia, bipolar disorder and depression, are at increased risk of developing mental health problems compared to the general population. Little is known regarding the early developmental trajectories of infants who are at ultra-high risk and in particular the balance of risk and protective factors expressed in the quality of early caregiver-interaction. Methods/Design: We are establishing a cohort of pregnant women with a lifetime diagnosis of schizophrenia, bipolar disorder, major depressive disorder and a non-psychiatric control group. Factors in the parents, the infant and the social environment will be evaluated at 1, 4, 16 and 52 weeks in terms of evolution of very early indicators of developmental risk and resilience focusing on three possible environmental transmission mechanisms: stress, maternal caregiver representation, and caregiver-infant interaction. Discussion: The study will provide data on very early risk developmental status and associated psychosocial risk factors, which will be important for developing targeted preventive interventions for infants of parents with severe mental disorder
    corecore