16 research outputs found

    Characterization of Liposomes for Cancer Cell Transfection

    Get PDF
    We have characterized a broad range of liposome formulations with varying DcChol:DOPE ratio. Subsequent addition of DcChol to liposomes increases its positive surface charge. However, loading the nuclear acids did not neutralize the overall negative surface potential to a similar extent. The liposomes were tested by transfection of DNA in living cancer cells

    Phonons in a one-dimensional microfluidic crystal

    Full text link
    The development of a general theoretical framework for describing the behaviour of a crystal driven far from equilibrium has proved difficult1. Microfluidic crystals, formed by the introduction of droplets of immiscible fluid into a liquid-filled channel, provide a convenient means to explore and develop models to describe non-equilibrium dynamics2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Owing to the fact that these systems operate at low Reynolds number (Re), in which viscous dissipation of energy dominates inertial effects, vibrations are expected to be over-damped and contribute little to their dynamics12, 13, 14. Against such expectations, we report the emergence of collective normal vibrational modes (equivalent to acoustic 'phonons') in a one-dimensional microfluidic crystal of water-in-oil droplets at Reapprox10-4. These phonons propagate at an ultra-low sound velocity of approx100 mum s-1 and frequencies of a few hertz, exhibit unusual dispersion relations markedly different to those of harmonic crystals, and give rise to a variety of crystal instabilities that could have implications for the design of commercial microfluidic systems. First-principles theory shows that these phonons are an outcome of the symmetry-breaking flow field that induces long-range inter-droplet interactions, similar in nature to those observed in many other systems including dusty plasma crystals15, 16, vortices in superconductors17, 18, active membranes19 and nucleoprotein filaments20.Comment: https://www.weizmann.ac.il/complex/tlusty/papers/NaturePhys2006.pd

    Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells

    Get PDF
    We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 Îźm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 Îźm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation

    Optical tweezing beam control using liquid crystal adaptive optical elements

    Get PDF
    Liquid crystal (LC) adaptive optical elements are described, which provide an alternative to existing micropositioning technologies in optical tweezing. A full description of this work is given in [1]. An adaptive LC prism supplies tip/tilt to the phase profile of the trapping beam, giving rise to an available steering radius within the x-y plane of 10 Îźm. Additionally, a modally addressed adaptive LC lens provides defocus, offering a z-focal range for the trapping site of 100 Îźm. The result is full three-dimensional positional control of trapped particle(s) using a simple and wholly electronic control system. Compared to competing technologies, these devices provide a lower degree of controllability, but have the advantage of simplicity, cost and light efficiency. Furthermore, due to their birefringence, LC elements offer the opportunity of the creation of dual optical traps with controllable depth and separation

    Microfluidic sorting in an optical lattice

    No full text
    The response of a microscopic dielectric object to an applied light field can profoundly affect its kinetic motion(1). A classic example of this is an optical trap, which can hold a particle in a tightly focused light beam(2). Optical fields can also be used to arrange, guide or deflect particles in appropriate light-field geometries(3,4). Here we demonstrate an optical sorter for microscopic particles that exploits the interaction of particles-biological or otherwise-with an extended, interlinked, dynamically reconfigurable, three-dimensional optical lattice. The strength of this interaction with the lattice sites depends on the optical polarizability of the particles, giving tunable selection criteria. We demonstrate both sorting by size (of protein microcapsule drug delivery agents) and sorting by refractive index (of other colloidal particle streams). The sorting efficiency of this method approaches 100%, with values of 96% or more observed even for concentrated solutions with throughputs exceeding those reported for fluorescence-activated cell sorting(5). This powerful, non-invasive technique is suited to sorting and fractionation within integrated ('lab-on-a-chip') microfluidic systems, and can be applied in colloidal, molecular and biological research.</p
    corecore