30 research outputs found

    The Mating-Type Chromosome in the Filamentous Ascomycete Neurospora tetrasperma Represents a Model for Early Evolution of Sex Chromosomes

    Get PDF
    We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains), derived from one N. tetrasperma heterokaryon (mat A+mat a), was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first “evolutionary stratum”, genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers

    Inefficient purifying selection: the mammalian Y chromosome in the rodent genus Mus

    Full text link
    Two related genes with potentially similar functions, one on the Y chromosome and one on the X chromosome, were examined to determine if they evolved differently because of their chromosomal positions. Six hundred fifty-seven base pairs of coding sequence of Jarid1d ( Smcy ) on the Y chromosome and Jarid1c ( Smcx ) on the X chromosome were sequenced in 13 rodent taxa. An analysis of replacement and silent substitutions, using a counting method designed for samples with small evolutionary distances, showed a significant difference between the two genes. The different patterns of replacement and silent substitutions within Jarid1d and Jarid1c may be a result of evolutionary mechanisms that are particularly strong on the Y chromosome because of its unique properties. These findings are similar to results of previous studies of Y chromosomal genes in these and other mammalian taxa, suggesting that genes on the mammalian Y evolve in a chromosome-specific manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46987/1/335_2005_Article_50.pd

    Differentiation in Neuroblastoma: Diffusion-Limited Hypoxia Induces Neuro-Endocrine Secretory Protein 55 and Other Markers of a Chromaffin Phenotype

    Get PDF
    Background: Neuroblastoma is a childhood malignancy of sympathetic embryonal origin. A high potential for differentiation is a hallmark of neuroblastoma cells. We have previously presented data to suggest that in situ differentiation in tumors frequently proceeds along the chromaffin lineage and that decreased oxygen ( hypoxia) plays a role in this. Here we explore the utility of Neuro-Endocrine Secretory Protein 55 ( NESP55), a novel member of the chromogranin family, as a marker for this process.Methodology/Principal Findings: Immunohistochemical analyses and in situ hybridizations were performed on human fetal tissues, mouse xenografts of human neuroblastoma cell lines, and on specimens of human neuroblastoma/ganglioneuroma. Effects of anaerobic exposure on gene expression by cultured neuroblastoma cells was analyzed with quantitative real-time PCR. Fetal sympathetic nervous system expression of NESP55 was shown to be specific for chromaffin cell types. In experimental and clinical neuroblastoma NESP55 immunoreactivity was specific for regions of chronic hypoxia. NESP55 expression also correlated strikingly with morphological evidence of differentiation and with other chromaffin-specific patterns of gene expression, including IGF2 and HIF2 alpha. Anaerobic culture of five neuroblastoma cell lines resulted in an 18.9-fold mean up-regulation of NESP55.Conclusions/Significance: The data confirms that chronic tumor hypoxia is a key microenvironmental factor for neuroblastoma cell differentiation, causing induction of chromaffin features and NESP55 provides a reliable marker for this neuronal to neuroendocrine transition. The hypoxia-induced phenotype is the predominant form of differentiation in stroma-poor tumors, while in stroma-rich tumors the chromaffin phenotype coexists with ganglion cell-like differentiation. The findings provide new insights into the biological diversity which is a striking feature of this group of tumors

    Immunogenicity, impact on carriage and reactogenicity of 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine in Kenyan children aged 1-4 years: a randomized controlled trial.

    Get PDF
    BACKGROUND: The impact on carriage and optimal schedule for primary vaccination of older children with 10-valent pneumococcal non-typeable Haemophilus influenzae protein-D conjugate vaccine (PHiD-CV) are unknown. METHODS: 600 Kenyan children aged 12-59 months were vaccinated at days 0, 60 and 180 in a double-blind randomized controlled trial according to the following vaccine sequence: Group A: PHiD-CV, PHiD-CV, diphtheria/tetanus/acellular pertussis vaccine (DTaP); Group B: PHiD-CV, DTaP, PHiD-CV; Group C: hepatitis A vaccine (HAV), DTaP, HAV. Nasopharyngeal carriage of Streptococcus pneumoniae was measured at five timepoints. In 375 subjects, serotype-specific responses were measured by 22F-inhibition ELISA and opsonophagocytic killing assays (OPA) one month after vaccination. RESULTS: Following one dose of PHiD-CV, >90% of recipients developed IgG≥0.35 µg/mL to serotypes 1, 4, 5, 7F, 9V and 18C and OPA≥8 to serotypes 4, 7F, 9V, 18C, 23F. After a second dose >90% of recipients had IgG≥0.35 µg/mL to all vaccine serotypes and OPA≥8 to all vaccine serotypes except 1 and 6B. At day 180, carriage of vaccine-type pneumococci was 21% in recipients of two doses of PHiD-CV (Group A) compared to 31% in controls (p = 0.04). Fever after dose 1 was reported by 41% of PHiD-CV recipients compared to 26% of HAV recipients (p<0.001). Other local and systemic adverse experiences were similar between groups. CONCLUSIONS: Vaccination of children aged 12-59 months with two doses of PHiD-CV two to six months apart was immunogenic, reduced vaccine-type pneumococcal carriage and was well-tolerated. Administration of PHiD-CV would be expected to provide effective protection against vaccine-type disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT01028326
    corecore