39 research outputs found

    A decision tree - Based method for the differential diagnosis of Aortic Stenosis from Mitral Regurgitation using heart sounds

    Get PDF
    BACKGROUND: New technologies like echocardiography, color Doppler, CT, and MRI provide more direct and accurate evidence of heart disease than heart auscultation. However, these modalities are costly, large in size and operationally complex and therefore are not suitable for use in rural areas, in homecare and generally in primary healthcare set-ups. Furthermore the majority of internal medicine and cardiology training programs underestimate the value of cardiac auscultation and junior clinicians are not adequately trained in this field. Therefore efficient decision support systems would be very useful for supporting clinicians to make better heart sound diagnosis. In this study a rule-based method, based on decision trees, has been developed for differential diagnosis between "clear" Aortic Stenosis (AS) and "clear" Mitral Regurgitation (MR) using heart sounds. METHODS: For the purposes of our experiment we used a collection of 84 heart sound signals including 41 heart sound signals with "clear" AS systolic murmur and 43 with "clear" MR systolic murmur. Signals were initially preprocessed to detect 1st and 2nd heart sounds. Next a total of 100 features were determined for every heart sound signal and relevance to the differentiation between AS and MR was estimated. The performance of fully expanded decision tree classifiers and Pruned decision tree classifiers were studied based on various training and test datasets. Similarly, pruned decision tree classifiers were used to examine their differentiation capabilities. In order to build a generalized decision support system for heart sound diagnosis, we have divided the problem into sub problems, dealing with either one morphological characteristic of the heart-sound waveform or with difficult to distinguish cases. RESULTS: Relevance analysis on the different heart sound features demonstrated that the most relevant features are the frequency features and the morphological features that describe S1, S2 and the systolic murmur. The results are compatible with the physical understanding of the problem since AS and MR systolic murmurs have different frequency contents and different waveform shapes. On the contrary, in the diastolic phase there is no murmur in both diseases which results in the fact that the diastolic phase signals cannot contribute to the differentiation between AS and MR. We used a fully expanded decision tree classifier with a training set of 34 records and a test set of 50 records which resulted in a classification accuracy (total corrects/total tested) of 90% (45 correct/50 total records). Furthermore, the method proved to correctly classify both AS and MR cases since the partial AS and MR accuracies were 91.6% and 88.5% respectively. Similar accuracy was achieved using decision trees with a fraction of the 100 features (the most relevant). Pruned Differentiation decision trees did not significantly change the classification accuracy of the decision trees both in terms of partial classification and overall classification as well. DISCUSSION: Present work has indicated that decision tree algorithms decision tree algorithms can be successfully used as a basis for a decision support system to assist young and inexperienced clinicians to make better heart sound diagnosis. Furthermore, Relevance Analysis can be used to determine a small critical subset, from the initial set of features, which contains most of the information required for the differentiation. Decision tree structures, if properly trained can increase their classification accuracy in new test data sets. The classification accuracy and the generalization capabilities of the Fully Expanded decision tree structures and the Pruned decision tree structures have not significant difference for this examined sub-problem. However, the generalization capabilities of the decision tree based methods were found to be satisfactory. Decision tree structures were tested on various training and test data set and the classification accuracy was found to be consistently high

    Snazer: the simulations and networks analyzer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Networks are widely recognized as key determinants of structure and function in systems that span the biological, physical, and social sciences. They are static pictures of the interactions among the components of complex systems. Often, much effort is required to identify networks as part of particular patterns as well as to visualize and interpret them.</p> <p>From a pure dynamical perspective, simulation represents a relevant <it>way</it>-<it>out</it>. Many simulator tools capitalized on the "noisy" behavior of some systems and used formal models to represent cellular activities as temporal trajectories. Statistical methods have been applied to a fairly large number of replicated trajectories in order to infer knowledge.</p> <p>A tool which both graphically manipulates reactive models and deals with sets of simulation time-course data by aggregation, interpretation and statistical analysis is missing and could add value to simulators.</p> <p>Results</p> <p>We designed and implemented <it>Snazer</it>, the simulations and networks analyzer. Its goal is to aid the processes of visualizing and manipulating reactive models, as well as to share and interpret time-course data produced by stochastic simulators or by any other means.</p> <p>Conclusions</p> <p><it>Snazer </it>is a solid prototype that integrates biological network and simulation time-course data analysis techniques.</p

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Designing and implementing the transition to a fully digital hospital

    No full text
    corecore