2 research outputs found

    Resistance exercise stimulates mixed muscle protein synthesis in lean and obese young adults.

    Get PDF
    Obese individuals exhibit a diminished muscle protein synthesis response to nutrient stimulation when compared with their lean counterparts. However, the effect of obesity on exercise-stimulated muscle protein synthesis remains unknown. Nine lean (23.5 ± 0.6 kg/m2 ) and 8 obese (33.6 ± 1.2 kg/m2 ) physically active young adults participated in a study that determined muscle protein synthesis and intracellular signaling at rest and following an acute bout of resistance exercise. Mixed muscle protein synthesis was determined by combining stable isotope tracer ([13 C6 ]phenylalanine) infusion with serial biopsies of the vastus lateralis. A unilateral leg resistance exercise model was adopted so that resting and postexercise measurements of muscle protein synthesis could be obtained simultaneously. Obesity was associated with higher basal levels of serum insulin (P < 0.05), plasma triacylglycerol (P < 0.01), plasma cholesterol (P < 0.01), and plasma CRP (P < 0.01), as well as increased insulin resistance determined by HOMA-IR (P < 0.05). However, resting and postexercise rates of muscle protein synthesis were not significantly different between lean and obese participants (P = 0.644). Furthermore, resistance exercise stimulated muscle protein synthesis (~50% increase) in both groups (P < 0.001), with no difference between lean and obese (P = 0.809). Temporal increases in the phosphorylation of intracellular signaling proteins (AKT/4EBP1/p70S6K) were observed within the exercised leg (P < 0.05), with no differences between lean and obese. These findings suggest a normal anabolic response to muscle loading in obese young adults

    A 7‐day high‐fat, high‐calorie diet induces fibre‐specific increases in intramuscular triglyceride and perilipin protein expression in human skeletal muscle

    No full text
    KEY POINTS: We have recently shown that a high-fat high-calorie (HFHC) diet decreases whole body glucose clearance without impairing skeletal muscle insulin signalling, in healthy lean individuals. These diets are also known to increase skeletal muscle IMTG stores, but the effect on lipid metabolites leading to skeletal muscle insulin resistance has not been investigated. This study measured the effect of 7 days HFHC diet on: 1) skeletal muscle concentration of lipid metabolites, and 2) potential changes in the perilipin (PLIN) content of the lipid droplets (LD) storing IMTG. The HFHC diet increased PLIN3 protein expression and redistributed PLIN2 to LD stores in type I fibres. The HFHC diet increased IMTG content in type I fibres, while lipid metabolite concentrations remained the same. The data suggest that the increases in IMTG stores assists reducing the accumulation of lipid metabolites known to contribute to skeletal muscle insulin resistance. ABSTRACT: A HFHC diet reduces whole body glucose clearance without impairing skeletal muscle insulin signalling in healthy lean individuals. HFHC diets also increase skeletal muscle lipid stores. However, unlike certain lipid metabolites, intramuscular triglyceride (IMTG) stored within lipid droplets (LD) does not directly contribute to skeletal muscle insulin resistance. Increased expression of perilipin (PLIN) proteins and colocalisation to LD has been shown to assist in IMTG storage. We aimed to test the hypothesis that 7 days on a HFHC diet increases IMTG content while minimising accumulation of lipid metabolites known to disrupt skeletal muscle insulin signalling in sedentary and obese individuals. We also aimed to identify changes in expression and subcellular distribution of proteins involved in IMTG storage. Muscle biopsies were obtained from the m. vastus lateralis of 13 (n = 11 males, n = 2 females) healthy lean individuals (age: 23 ± 2.5 y, BMI: 24.5 ± 2.4 kg m-2 ), following an overnight fast, before and after consuming a high-fat (64% energy) high-calorie (+47% kcal) diet for 7 days. After the HFHC diet, IMTG content increased in type I fibres only (+10%; P < 0.001), whereas there was no change in the concentration of either total diacylglycerol (P = 0.123) or total ceramides (P = 0.150). Of the PLINs investigated, only PLIN3 content increased (+50%; P < 0.01) solely in type I fibres. LDs labelled with PLIN2 increased (80%; P < 0.01), also in type I fibres only. We propose that these adaptations to LD support IMTG storage and minimise accumulation of lipid metabolites to protect skeletal muscle insulin signalling following 7 days HFHC diet
    corecore