32 research outputs found

    Serum S100B levels after meningioma surgery: A comparison of two laboratory assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100B protein is a potential biomarker of central nervous system insult. This study quantitatively compared two methods for assessing serum concentration of S100B.</p> <p>Methods</p> <p>A prospective, observational study performed in a single tertiary medical center. Included were fifty two consecutive adult patients undergoing surgery for meningioma that provided blood samples for determination of S100B concentrations. Eighty samples (40 pre-operative and 40 postoperative) were randomly selected for batch testing. Each sample was divided into two aliquots. These were analyzed by ELISA (Sangtec) and a commercial kit (Roche Elecsys<sup>®</sup>) for S100B concentrations. Statistical analysis included regression modelling and Bland-Altman analysis.</p> <p>Results</p> <p>A parsimonious linear model best described the prediction of commercial kit values by those determined by ELISA (y = 0.045 + 0.277*x, x = ELISA value, R<sup>2 </sup>= 0.732). ELISA measurements tended to be higher than commercial kit measurements. This discrepancy increased linearly with increasing S100B concentrations. At concentrations above 0.7 μg/L the paired measurements were consistently outside the limits of agreement in the Bland-Altman display. Similar to other studies that used alternative measurement methods, sex and age related differences in serum S100B levels were not detected using the Elecsys<sup>® </sup>(p = 0.643 and 0.728 respectively).</p> <p>Conclusion</p> <p>Although a generally linear relationship exists between serum S100B concentrations measured by ELISA and a commercially available kit, ELISA values tended to be higher than commercial kit measurements particularly at concentrations over 0.7 μg/L, which are suggestive of brain injury. International standardization of commercial kits is required before the predictive validity of S100B for brain damage can be effectively assessed in clinical practice.</p

    Orally Administrated Cinnamon Extract Reduces β-Amyloid Oligomerization and Corrects Cognitive Impairment in Alzheimer's Disease Animal Models

    Get PDF
    An increasing body of evidence indicates that accumulation of soluble oligomeric assemblies of β-amyloid polypeptide (Aβ) play a key role in Alzheimer's disease (AD) pathology. Specifically, 56 kDa oligomeric species were shown to be correlated with impaired cognitive function in AD model mice. Several reports have documented the inhibition of Aβ plaque formation by compounds from natural sources. Yet, evidence for the ability of common edible elements to modulate Aβ oligomerization remains an unmet challenge. Here we identify a natural substance, based on cinnamon extract (CEppt), which markedly inhibits the formation of toxic Aβ oligomers and prevents the toxicity of Aβ on neuronal PC12 cells. When administered to an AD fly model, CEppt rectified their reduced longevity, fully recovered their locomotion defects and totally abolished tetrameric species of Aβ in their brain. Furthermore, oral administration of CEppt to an aggressive AD transgenic mice model led to marked decrease in 56 kDa Aβ oligomers, reduction of plaques and improvement in cognitive behavior. Our results present a novel prophylactic approach for inhibition of toxic oligomeric Aβ species formation in AD through the utilization of a compound that is currently in use in human diet
    corecore