7 research outputs found

    Distinctive functions of membrane type 1 matrix-metalloprotease (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation

    Get PDF
    Membrane type 1-matrix metalloprotease (MT1-MMP or MMP-14) is a major activator of pro-MMP-2 and is essential for skeletal development. We show here that it is required for branching morphogenesis of the submandibular gland but not the lung. Instead, in the lung, it is essential for postnatal development of alveolar septae. Lung development in Mmp14-/- mice is arrested at the prealveolar stage with compensatory hyperinflation of immature saccules. Mmp2-/- mice lacked comparable defects in the lung and submandibular gland, suggesting that MT1-MMP acts via mechanisms independent of pro-MMP-2 activation. Since the developmental defects in the lung are first manifest around the time of initial vascularization (E16.5), we investigated the behavior of pulmonary endothelial cells from Mmp14+/+ and Mmp14-/- mice. Endothelial cells from lungs of 1-week-old Mmp14-/- mice show reduced migration and formation of three-dimensional structures on Matrigel. Since pulmonary septal development requires capillary growth, the underlying mechanism of pulmonary hypoplasia in Mmp14-/- mice may be defective angiogenesis, supporting a model in which angiogenesis is a critical rate-limiting step for acquisition of pulmonary parenchymal mass. © 2004 Elsevier Inc. All rights reserved.link_to_subscribed_fulltex

    Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis

    No full text
    Glial cell line-derived neurotrophic factor signaling through the Ret receptor tyrosine kinase is crucial for ureteric bud branching morphogenesis during kidney development, yet few of the downstream genes are known. Here we show that the ETS transcription factors Etv4 and Etv5 are positively regulated by Ret signaling in the ureteric bud tips. Mice lacking both Etv4 alleles and one Etv5 allele show either renal agenesis or severe hypodysplasia, whereas kidney development fails completely in double homozygotes. We identified several genes whose expression in the ureteric bud depends on Etv4 and Etv5, including Cxcr4, Myb, Met and Mmp14. Thus, Etv4 and Etv5 are key components of a gene network downstream of Ret that promotes and controls renal branching morphogenesis

    Matrix metalloproteinases and the regulation of tissue remodelling

    No full text
    corecore