75 research outputs found

    Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings

    Get PDF
    Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free) reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the Bayesian perceives irreducible uncertainty or risk: even knowing the payoff probabilities of a given arm, the outcome remains uncertain. Second, there is (parameter) estimation uncertainty or ambiguity: payoff probabilities are unknown and need to be estimated. Third, the outcome probabilities of the arms change: the sudden jumps are referred to as unexpected uncertainty. We document how the three levels of uncertainty evolved during the course of our experiment and how it affected the learning rate. We then zoom in on estimation uncertainty, which has been suggested to be a driving force in exploration, in spite of evidence of widespread aversion to ambiguity. Our data corroborate the latter. We discuss neural evidence that foreshadowed the ability of humans to distinguish between the three levels of uncertainty. Finally, we investigate the boundaries of human capacity to implement Bayesian learning. We repeat the experiment with different instructions, reflecting varying levels of structural uncertainty. Under this fourth notion of uncertainty, choices were no better explained by Bayesian updating than by (model-free) reinforcement learning. Exit questionnaires revealed that participants remained unaware of the presence of unexpected uncertainty and failed to acquire the right model with which to implement Bayesian updating

    A Sodium Leak Current Regulates Pacemaker Activity of Adult Central Pattern Generator Neurons in Lymnaea Stagnalis

    Get PDF
    The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis. Our results show that the channel conducts an inward leak current carried by Na+ (ILeak-Na). The ILeak-Na contributed to the resting membrane potential and was required for maintaining rhythmic action potential bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown of the U-type channel suppressed the aerial respiratory behaviour of the adult snail in vivo. These findings identified the Na+ leak conductance via the U-type channel, likely a NALCN-like channel, as one of the fundamental mechanisms regulating rhythm activity of pacemaker neurons and respiratory behaviour in adult animals

    Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration.</p> <p>Methods</p> <p>Mouse organotypic hippocampal slice cultures were treated with <it>N</it>-methyl-D-aspartic acid (NMDA) to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia.</p> <p>Results</p> <p>Treatment of mouse organotypic hippocampal slice cultures with 10-50 ÎŒM <it>N</it>-methyl-D-aspartic acid (NMDA) induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA.</p> <p>Conclusions</p> <p>Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.</p

    The Past and Future of Evolutionary Economics : Some Reflections Based on New Bibliometric Evidence

    Get PDF
    This document is the Accepted Manuscript version of the following article: Geoffrey M. Hodgson, and Juha-Antti Lamberg, ‘The past and future of evolutionary economics: some reflections based on new bibliometric evidence’, Evolutionary and Institutional Economics Review, first online 20 June 2016. The final publication is available at Springer via doi: http://dx.doi.org/10.1007/s40844-016-0044-3 © Japan Association for Evolutionary Economics 2016The modern wave of ‘evolutionary economics’ was launched with the classic study by Richard Nelson and Sidney Winter (1982). This paper reports a broad bibliometric analysis of ‘evolutionary’ research in the disciplines of management, business, economics, and sociology over 25 years from 1986 to 2010. It confirms that Nelson and Winter (1982) is an enduring nodal reference point for this broad field. The bibliometric evidence suggests that ‘evolutionary economics’ has benefitted from the rise of business schools and other interdisciplinary institutions, which have provided a home for evolutionary terminology, but it has failed to nurture a strong unifying core narrative or theory, which in turn could provide superior answers to important questions. This bibliometric evidence also shows that no strong cluster of general theoretical research immediately around Nelson and Winter (1982) has subsequently emerged. It identifies developmental problems in a partly successful but fragmented field. Future research in ‘evolutionary economics’ needs a more integrated research community with shared conceptual narratives and common research questions, to promote conversation and synergy between diverse clusters of research.Peer reviewedFinal Accepted Versio

    Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels

    Full text link

    Governance im Politikfeld Wirtschaftspolitik

    Get PDF
    This paper gives an overview of the topic "economic governance". This term is used in economics and neighboring social sciences as a generic term under which usually all activities are subsumed that are conducted by economic policymakers to 'steer' or 'control' the economic system, individual markets therein or certain economic actors (e.g., businesses, consumers). In addition to a more detailed clarification of the concept of "economic governance" and the presentation of actors and instruments of economic governance, the paper discusses why and in what situations economic governance is necessary. The latter issue is the subject of a continuing debate in politics, the public and the social sciences

    Proton-gated Ca(2+)-permeable TRP channels damage myelin in conditions mimicking ischaemia

    Get PDF
    The myelin sheaths wrapped around axons by oligodendrocytes are crucial for brain function. In ischaemia myelin is damaged in a Ca(2+)-dependent manner, abolishing action potential propagation. This has been attributed to glutamate release activating Ca(2+)-permeable N-methyl-d-aspartate (NMDA) receptors. Surprisingly, we now show that NMDA does not raise the intracellular Ca(2+) concentration ([Ca(2+)]i) in mature oligodendrocytes and that, although ischaemia evokes a glutamate-triggered membrane current, this is generated by a rise of extracellular [K(+)] and decrease of membrane K(+) conductance. Nevertheless, ischaemia raises oligodendrocyte [Ca(2+)]i, [Mg(2+)]i and [H(+)]i, and buffering intracellular pH reduces the [Ca(2+)]i and [Mg(2+)]i increases, showing that these are evoked by the rise of [H(+)]i. The H(+)-gated [Ca(2+)]i elevation is mediated by channels with characteristics of TRPA1, being inhibited by ruthenium red, isopentenyl pyrophosphate, HC-030031, A967079 or TRPA1 knockout. TRPA1 block reduces myelin damage in ischaemia. These data suggest that TRPA1-containing ion channels could be a therapeutic target in white matter ischaemia

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore