23 research outputs found

    Pharmaco-Based fMRI and Neurophysiology in Non-human Primates

    No full text
    Brain activity is continuously changing, among others reflecting the effects of neuromodulation on multiple spatial and temporal scales. By altering the input–output relationship of neural circuits, neuromodulators can also affect their energy expenditure, with concomitant effects on the hemodynamic responses. Yet, it is still unclear how to study and interpret the effects of different neuromodulators, for instance, how to differentiate their effects from underlying behavior- or stimulus-driven activity. Gaining insights into neuromodulatory processes is largely hampered by the lack of approaches providing information concurrently at different spatio-temporal scales. Here, we provide an overview of the multimodal approach consisting of functional magnetic resonance imaging (fMRI), pharmacology and neurophysiology, which we developed to elucidate causal relationships between neuromodulation and neurovascular coupling in visual cortex of anesthetized macaques

    Up-Regulation of Oligodendrocyte Lineage Markers in the Cerebellum of Autistic Patients: Evidence from Network Analysis of Gene Expression

    No full text
    Autism is a neurodevelopmental disorder manifested by impaired social interaction, deficits in communication skills, restricted interests, and repetitive behaviors. In neurodevelopmental, neurodegenerative, and psychiatric disorders, glial cells undergo morphological, biochemical, and functional rearrangements, which are critical for neuronal development, neurotransmission, and synaptic connectivity. Cerebellar function is not limited to motor coordination but also contributes to cognition and may be affected in autism. Oligodendrocytes and specifically oligodendroglial precursors are highly susceptible to oxidative stress and excitotoxic insult. In the present study, we searched for evidence for developmental oligodendropathy in the context of autism by performing a network analysis of gene expression of cerebellar tissue. We created an in silico network model (OLIGO) showing the landscape of interactions between oligodendrocyte markers and demonstrated that more than 50 % (16 out of 30) of the genes within this model displayed significant changes of expression (corrected p valu
    corecore