26 research outputs found

    False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The entomological inoculation rate (EIR) is an important indicator in estimating malaria transmission and the impact of vector control. To assess the EIR, the enzyme-linked immunosorbent assay (ELISA) to detect the circumsporozoite protein (CSP) is increasingly used. However, several studies have reported false positive results in this ELISA. The false positive results could lead to an overestimation of the EIR. The aim of present study was to estimate the level of false positivity among different anopheline species in Cambodia and Vietnam and to check for the presence of other parasites that might interact with the anti-CSP monoclonal antibodies.</p> <p>Methods</p> <p>Mosquitoes collected in Cambodia and Vietnam were identified and tested for the presence of sporozoites in head and thorax by using CSP-ELISA. ELISA positive samples were confirmed by a <it>Plasmodium </it>specific PCR. False positive mosquitoes were checked by PCR for the presence of parasites belonging to the Haemosporidia, Trypanosomatidae, Piroplasmida, and Haemogregarines. The heat-stability and the presence of the cross-reacting antigen in the abdomen of the mosquitoes were also checked.</p> <p>Results</p> <p>Specimens (N = 16,160) of seven anopheline species were tested by CSP-ELISA for <it>Plasmodium falciparum </it>and <it>Plasmodium vivax </it>(Pv210 and Pv247). Two new vector species were identified for the region: <it>Anopheles pampanai </it>(<it>P. vivax</it>) and <it>Anopheles barbirostris </it>(<it>Plasmodium malariae</it>). In 88% (155/176) of the mosquitoes found positive with the <it>P. falciparum </it>CSP-ELISA, the presence of <it>Plasmodium </it>sporozoites could not be confirmed by PCR. This percentage was much lower (28% or 5/18) for <it>P. vivax </it>CSP-ELISAs. False positive CSP-ELISA results were associated with zoophilic mosquito species. None of the targeted parasites could be detected in these CSP-ELISA false positive mosquitoes. The ELISA reacting antigen of <it>P. falciparum </it>was heat-stable in CSP-ELISA true positive specimens, but not in the false positives. The heat-unstable cross-reacting antigen is mainly present in head and thorax and almost absent in the abdomens (4 out of 147) of the false positive specimens.</p> <p>Conclusion</p> <p>The CSP-ELISA can considerably overestimate the EIR, particularly for <it>P. falciparum </it>and for zoophilic species. The heat-unstable cross-reacting antigen in false positives remains unknown. Therefore it is highly recommended to confirm all positive CSP-ELISA results, either by re-analysing the heated ELISA lysate (100°C, 10 min), or by performing <it>Plasmodium </it>specific PCR followed if possible by sequencing of the amplicons for <it>Plasmodium </it>species determination.</p

    Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation

    No full text
    The experimental and numerical techniques for evaluation of mechanical properties of highly inhomogeneous materials are discussed. The techniques are applied to coal as an example of such a material. Characterization of coals is a very difficult task because they are composed of a number of distinct organic entities called macerals and some amount of inorganic substances along with internal pores and cracks. It is argued that to avoid the influence of the pores and cracks, the samples of the materials have to be prepared as very thin and very smooth sections, and the depth-sensing nanoindentation (DSNI) techniques has to be employed rather than the conventional microindentation. It is shown that the use of the modern nanoindentation techniques integrated with transmitted light microscopy is very effective for evaluation of elastic modulus and hardness of coal macerals. However, because the thin sections are glued to the substrate and the glue thickness is approximately equal to the thickness of the section, the conventional DSNI techniques show the effective properties of the section/substrate system rather than the properties of the material. As the first approximation, it is proposed to describe the sample/substrate system using the classic exponential weight function for the dependence of the equivalent elastic contact modulus on the depth of indentation. This simple approach allows us to extract the contact modulus of the material constitutes from the data measured on a region occupied by a specific component of the material. The proposed approach is demonstrated on application to the experimental data obtained by Berkovich nanoindentation with varying maximum depth of indentation
    corecore