14 research outputs found

    Biogenic Nanoparticle Synthesis Using Marine Alga Schizochytrium sp.

    No full text
    International Conference on Medical and Biological Engineering in Bosnia and Herzegovina (CMBEBIH) -- MAY 16-18, 2019 -- Banja Luka, BOSNIA & HERCEGWOS: 000491311000033Nanotechnology is one of the most promising science and technology discipline that targets to bring new solutions for many applications in biotechnology, biomedical, energy and cosmetic industry by improving particles and devices scale of nanometers. Various sized and shaped nanoparticles can be synthesized by several methods. Up to now, scientists prefer physical and chemical fabrication of nanoparticles. But, these methods contain use of toxic, expensive and non-environmentalist solvents, reducing and stabilising agents. For a sustainable science, there is a necessity development of more eco-friendly, cost-effective and trustable alternative processes. in this context, using biological sources as reaction agent, have a strong potential. Plants, bacteria, fungi are essential biological sources for transformation of metals to nanoparticles. Many researchers focus on fungi and bacteriological potential in nanofabrication whereas algae are highly intriguing biological systems in nanotechnological approach. Some of cyanobacteria and algae have previously been used to synthesize intracellular or extracellular metal nanoparticles. Most of the research concentrate especially on gold and silver nanoparticle production from algae. in this work; bioreduction of silver, zinc and iron metals have been investigated using culture supernatant of marine algae Schizochytrium sp. For characterization of nanoparticles, UV visible spectroscopy, zeta sizer were used. Nanoparticle size was determined by zeta sizer and particles' surface plasmon resonance band detected by UV-Visible Spectroscopy.Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [117M052]This research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with 117M052 Project Number

    Electrografting of calix[4]arenediazonium salts to form versatile robust platforms for spatially controlled surface functionalization

    No full text
    An essential issue in the development of materials presenting an accurately functionalized surface is to achieve control of layer structuring. Whereas the very popular method based on the spontaneous adsorption of alkanethiols on metal faces stability problems, the reductive electrografting of aryldiazonium salts yielding stable interface, struggles with the control of the formation and organization of monolayers. Here we report a general strategy for patterning surfaces using aryldiazonium surface chemistry. Calix[4]tetra-diazonium cations generated in situ from the corresponding tetra-anilines were electrografted on gold and carbon substrates. The well-preorganized macrocyclic structure of the calix[4]arene molecules allows the formation of densely packed monolayers. Through adequate decoration of the small rim of the calixarenes, functional molecules can then be introduced on the immobilized calixarene subunits, paving the way for an accurate spatial control of the chemical composition of a surface at molecular level.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore