7 research outputs found

    ARTIFICIAL INTELLIGENCE APPROACH TO CLASSIFY UNIPOLAR and BIPOLAR DEPRESSIVE DISORDERS

    No full text
    Machine learning (ML) approaches for medical decision making processes are valuable when both high classification accuracy and less feature requirements are satisfied. Artificial neural networks (ANNs) successfully meet the first goal with its adaptive engine while nature inspired algorithms are focusing on the feature selection (FS) process in order to eliminate less informative and less discriminant features. Besides engineering applications of ANN and FS algorithms, medical informatics is another emerging field using similar methods for medical data processing. Classification of psychiatric disorders is one of major focus of medical informatics using artificial intelligence approaches. Being one of the most debilitating psychiatric diseases, bipolar disorder (BD) is frequently misdiagnosed as unipolar disorder (UD), leading to suboptimal treatment and poor outcomes. Thus, discriminating UD and BD at earlier stages of illness could therefore help to facilitate efficient and specific treatment. The use of quantitative electroencephalography (EEG) cordance as a biomarker has greatly enhanced the clinical utility of EEG in psychiatric and neurological subjects. In this context, the paper puts forward a study using two-step hybridized methodology, particle swarm optimization (PSO) algorithm for feature selection process and ANN for training process. The noteworthy performance of ANN-PSO approach stated that it is possible to discriminate 31 bipolar and 58 unipolar subjects using selected features from alpha and theta frequency bands with 89.89% overall classification accurac

    A Review of Multi-Responsive Membranous Systems for Rate-Modulated Drug Delivery

    No full text
    Membrane technology is broadly applied in the medical field. The ability of membranous systems to effectively control the movement of chemical entities is pivotal to their significant potential for use in both drug delivery and surgical/medical applications. An alteration in the physical properties of a polymer in response to a change in environmental conditions is a behavior that can be utilized to prepare ‘smart’ drug delivery systems. Stimuli-responsive or ‘smart’ polymers are polymers that upon exposure to small changes in the environment undergo rapid changes in their microstructure. A stimulus, such as a change in pH or temperature, thus serves as a trigger for the release of drug from membranous drug delivery systems that are formulated from stimuli-responsive polymers. This article has sought to review the use of stimuli-responsive polymers that have found application in membranous drug delivery systems. Polymers responsive to pH and temperature have been extensively addressed in this review since they are considered the most important stimuli that may be exploited for use in drug delivery, and biomedical applications such as in tissue engineering. In addition, dual-responsive and glucose-responsive membranes have been also addressed as membranes responsive to diverse stimuli
    corecore