5 research outputs found

    The effectiveness of sponsorship of the F1 Singapore Grand Prix: recall and recognition

    Get PDF
    The effectiveness of sponsorship of the F1 Singapore Grand Prix: recall and recognitio

    Substrate specificity of an active dinuclear Zn(II) catalyst for cleavage of RNA analogues and a dinucleoside

    No full text
    The cleavage of the diribonucleoside UpU (uridylyl-3'-5'-uridine) to form uridine and uridine (2',3')-cyclic phosphate catalyzed by the dinuclear Zn(II) complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (Zn2(1)(H2O)) has been studied at pH 7-10 and 25 C. The kinetic data are consistent with the accumulation of a complex between catalyst and substrate and were analyzed to give values of kc (s-1), Kd (M), and kc/Kd (M-1 s-1) for the Zn2(1)(H2O)-catalyzed reaction. The pH rate profile of values for log kc/Kd for Zn2(1)(H2O)-catalyzed cleavage of UpU shows the same downward break centered at pH 7.8 as was observed in studies of catalysis of cleavage of 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) and uridine-3'-4-nitrophenyl phosphate (UpPNP). At low pH, where the rate acceleration for the catalyzed reaction is largest, the stabilizing interaction between Zn2(1)(H2O) and the bound transition states is 9.3, 7.2, and 9.6 kcal/mol for the catalyzed reactions of UpU, UpPNP, and HpPNP, respectively. The larger transition-state stabilization for Zn2(1)(H2O)-catalyzed cleavage of UpU (9.3 kcal/mol) compared with UpPNP (7.2 kcal/mol) provides evidence that the transition state for the former reaction is stabilized by interactions between the catalyst and the C-5'-oxyanion of the basic alkoxy leaving group

    Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial

    No full text
    corecore