262 research outputs found

    Apparent negative motion of vortex matter due to inhomogeneous pinning

    Get PDF
    We investigate the transport of vortices in superconductors with inhomgeneous pinning under a driving force. The inhomogeneity of pinning is simplified as strong-weak pinning regions. It is demonstrated that the interactions between the vortices captured by strong pinning potentials and the vortices in the weak pinning region cause absolute negative motion (ANM) of vortices: The vortices which are climbing toward the high barriers induced by the strong pinning with the help of driving force move toward the opposite direction of the force and back to their equilibrium positions in the weak pinning region as the force decreases or is withdrawn. Our simulations reveal that the hysteresis of ANM is determined by the competition between the speed of the negative motion which depends on the piining inhomogeneity in superconductors and the speed of the driving force. Under the conditions of either larger force scanning rate or higher pinning inhomogeneity, a marked ANM and a larger hysteretic speed-force loop could be observed. This indicates that the time window to observe the ANM should be chosen properly. Moreover, the V-1 characteristics of Ag-sheathed Bi=2223 tapes are measured, and experimental observations are qualitatively in agreement with the simulation

    The origin of fracture in the I-ECAP of AZ31B magnesium alloy

    Get PDF
    Magnesium alloys are very promising materials for weight-saving structural applications due to their low density, comparing to other metals and alloys currently used. However, they usually suffer from a limited formability at room temperature and low strength. In order to overcome those issues, processes of severe plastic deformation (SPD) can be utilized to improve mechanical properties, but processing parameters need to be selected with care to avoid fracture, very often observed for those alloys during forming. In the current work, the AZ31B magnesium alloy was subjected to SPD by incremental equal-channel angular pressing (I-ECAP) at temperatures varying from 398 K to 525 K (125 °C to 250 °C) to determine the window of allowable processing parameters. The effects of initial grain size and billet rotation scheme on the occurrence of fracture during I-ECAP were investigated. The initial grain size ranged from 1.5 to 40 µm and the I-ECAP routes tested were A, BC, and C. Microstructures of the processed billets were characterized before and after I-ECAP. It was found that a fine-grained and homogenous microstructure was required to avoid fracture at low temperatures. Strain localization arising from a stress relaxation within recrystallized regions, namely twins and fine-grained zones, was shown to be responsible for the generation of microcracks. Based on the I-ECAP experiments and available literature data for ECAP, a power law between the initial grain size and processing conditions, described by a Zener–Hollomon parameter, has been proposed. Finally, processing by various routes at 473 K (200 °C) revealed that route A was less prone to fracture than routes BC and C

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    Study of J/Psi decays into eta Kstar Kstar-bar

    Get PDF
    We report the first observation of \mPJpsi \to \mPeta\mPKst\mAPKst decay in a \mPJpsi sample of 58 million events collected with the BESII detector. The branching fraction is determined to be (1.15±0.13±0.22)×103(1.15 \pm 0.13 \pm 0.22)\times 10^{-3}. The selected signal event sample is further used to search for the \mPY resonance through \mPJpsi \to \mPeta \mPY, \mPY\to\mPKst\mAPKst. No evidence of a signal is seen. An upper limit of \mathrm{Br}(\mPJpsi \to \mPeta \mPY)\cdot\mathrm{Br}(\mPY\to\mPKst\mAPKst) < 2.52\times 10^{-4} is set at the 90% confidence level.Comment: 11 pages, 4 figure

    Study of J\psi decaying into \omega p \bar p

    Full text link
    The decay J/ψωppˉJ/\psi \to \omega p \bar p is studied using a 5.8×1075.8 \times 10^7 J/ψJ/\psi event sample accumulated with the BES II detector at the Beijing electron-positron collider. The decay branching fraction is measured to be B(J/ψωppˉ)=(9.8±0.3±1.4)×104B(J/\psi \to \omega p \bar p)=(9.8\pm 0.3\pm 1.4)\times 10^{-4}. No significant enhancement near the ppˉp\bar p mass threshold is observed, and an upper limit of B(J/ψωX(1860))B(X(1860)ppˉ)B(J/\psi \to \omega X(1860))B(X(1860)\to p\bar p) <1.5×105< 1.5 \times 10^{-5} is determined at the 95% confidence level, where X(1860) designates the near-threshold enhancement seen in the ppˉp\bar p mass spectrum in J/ψγppˉJ/\psi \to \gamma p \bar p decays.Comment: 5 pages, 4 figure

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore