8 research outputs found

    Hyperbaric oxygen therapy to treat acute sport-related traumatic brain injuries: A case series

    Get PDF
    We report on hyperbaric oxygen (HBO2) therapy used to improve postinjury outcomes in eight acutely concussed high school student-athletes (5 males, 3 females, mean age = 16.0 ± 1.2 years). Patients were randomly assigned into one of three intervention groups: (a) HBO2 therapy; (b) hyperbaric therapy with compressed medical-grade air (HBA); or (c) normobaric 100% O2 therapy. All patients completed five 1-hr treatments within the first 10 days following his or her concussion. Main outcome measures included mental status examination, symptom burden, and the number of days from injury until the physician permitted the student-athlete to return to activity. Patients receiving HBO2 treatment experienced the greatest absolute symptom reduction over the five treatment sessions. No meaningful differences were found in mental status examination. All participants returned to activity in a similar timeframe. HBO2 therapy may be an effective option for the acute treatment of postconcussion symptoms, particularly in young athletes presenting with a high symptom burden

    In Between β Lyrae and Algol: The Case of V356 Sgr

    No full text

    The origin and abundances of the chemical elements revisited

    No full text

    The origin and abundances of the chemical elements revisited

    No full text
    The basic scheme of nucleosynthesis (building of heavy elements from light ones) has held up very well since it was first proposed more than 30 years ago by E.M. Burbidge, G.R. Burbidge, A.G.W. Cameron, W.A. Fowler, and F. Hoyle. Significant advances in the intervening years include (a) observations of elemental and a few isotopic ratios in many more extrasolar-system sites, including metal-poor dwarf irregular galaxies, where very little has happened, and supernovae and their remnants, where a great deal has happened, (b) recognition of the early universe as good for making all the elements up to helium, (c) resolution of heavy element burning in stars into separate carbon, neon, oxygen, and silicon burning, with fine tuning of the resulting abundances by explosive nucleosynthesis in outgoing supernova shock waves, (d) clarification of the role of Type I supernovae, (e) concordance between elements produced in short-lived and long-lived stars with those that increased quickly and slowly over the history of the galaxy, and (f) calibration of calculations of the evolution and explosion of massive stars against the detailed observations of SN 1987A. The discussion presupposes a reader (a) with some prior knowledge of astronomy at the level of recognizing what is meant by an A star and an AGB star and (b) with at least a mild interest in how we got to where we currently are. © 1991 Springer-Verlag
    corecore