696 research outputs found

    Numerical study of scars in a chaotic billiard

    Full text link
    We study numerically the scaling properties of scars in stadium billiard. Using the semiclassical criterion, we have searched systematically the scars of the same type through a very wide range, from ground state to as high as the 1 millionth state. We have analyzed the integrated probability density along the periodic orbit. The numerical results confirm that the average intensity of certain types of scars is independent of \hbar rather than scales with \sqrt{\hbar}. Our findings confirm the theoretical predictions of Robnik (1989).Comment: 7 pages in Revtex 3.1, 5 PS figures available upon request. To appear in Phys. Rev. E, Vol. 55, No. 5, 199

    Wigner--Dyson statistics for a class of integrable models

    Full text link
    We construct an ensemble of second--quantized Hamiltonians with two bosonic degrees of freedom, whose members display with probability one GOE or GUE statistics. Nevertheless, these Hamiltonians have a second integral of motion, namely the boson number, and thus are integrable. To construct this ensemble we use some ``reverse engineering'' starting from the fact that nn--bosons in a two--level system with random interactions have an integrable classical limit by the old Heisenberg association of boson operators to actions and angles. By choosing an nn--body random interaction and degenerate levels we end up with GOE or GUE Hamiltonians. Ergodicity of these ensembles completes the example.Comment: 3 pages, 1 figur

    Viscosity in the escape-rate formalism

    Full text link
    We apply the escape-rate formalism to compute the shear viscosity in terms of the chaotic properties of the underlying microscopic dynamics. A first passage problem is set up for the escape of the Helfand moment associated with viscosity out of an interval delimited by absorbing boundaries. At the microscopic level of description, the absorbing boundaries generate a fractal repeller. The fractal dimensions of this repeller are directly related to the shear viscosity and the Lyapunov exponent, which allows us to compute its values. We apply this method to the Bunimovich-Spohn minimal model of viscosity which is composed of two hard disks in elastic collision on a torus. These values are in excellent agreement with the values obtained by other methods such as the Green-Kubo and Einstein-Helfand formulas.Comment: 16 pages, 16 figures (accepted in Phys. Rev. E; October 2003

    Business ethics : practical proposals

    Full text link
    While most people agree that the inculcation of ethical awareness is desirable, the means of stimulating this awareness vary among companies, industries and cultures. The fundamental question surrounding the difference between social responsibility and ethics is addressed. Guidelines for establishing ethical priorities from both the individual, group and organisational perspectives are provided. <br /

    Level statistics and eigenfunctions of pseudointegrable systems: dependence on energy and genus number

    Full text link
    We study the level statistics (second half moment I0I_0 and rigidity Δ3\Delta_3) and the eigenfunctions of pseudointegrable systems with rough boundaries of different genus numbers gg. We find that the levels form energy intervals with a characteristic behavior of the level statistics and the eigenfunctions in each interval. At low enough energies, the boundary roughness is not resolved and accordingly, the eigenfunctions are quite regular functions and the level statistics shows Poisson-like behavior. At higher energies, the level statistics of most systems moves from Poisson-like towards Wigner-like behavior with increasing gg. Investigating the wavefunctions, we find many chaotic functions that can be described as a random superposition of regular wavefunctions. The amplitude distribution P(ψ)P(\psi) of these chaotic functions was found to be Gaussian with the typical value of the localization volume Vloc0.33V_{\rm{loc}}\approx 0.33. For systems with periodic boundaries we find several additional energy regimes, where I0I_0 is relatively close to the Poisson-limit. In these regimes, the eigenfunctions are either regular or localized functions, where P(ψ)P(\psi) is close to the distribution of a sine or cosine function in the first case and strongly peaked in the second case. Also an interesting intermediate case between chaotic and localized eigenfunctions appears

    Chaotic self-similar wave maps coupled to gravity

    Full text link
    We continue our studies of spherically symmetric self-similar solutions in the SU(2) sigma model coupled to gravity. For some values of the coupling constant we present numerical evidence for the chaotic solution and the fractal threshold behavior. We explain this phenomenon in terms of horseshoe-like dynamics and heteroclinic intersections.Comment: 25 pages, 17 figure

    Chaos and Quantum Thermalization

    Full text link
    We show that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey {\it Berry's conjecture}. Berry's conjecture is expected to hold only if the corresponding classical system is chaotic, and essentially states that the energy eigenfunctions behave as if they were gaussian random variables. We review the existing evidence, and show that previously neglected effects substantially strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas as an explicit example of a many-body system which is known to be classically chaotic, and show that an energy eigenstate which obeys Berry's conjecture predicts a Maxwell--Boltzmann, Bose--Einstein, or Fermi--Dirac distribution for the momentum of each constituent particle, depending on whether the wave functions are taken to be nonsymmetric, completely symmetric, or completely antisymmetric functions of the positions of the particles. We call this phenomenon {\it eigenstate thermalization}. We show that a generic initial state will approach thermal equilibrium at least as fast as O(/Δ)t1O(\hbar/\Delta)t^{-1}, where Δ\Delta is the uncertainty in the total energy of the gas. This result holds for an individual initial state; in contrast to the classical theory, no averaging over an ensemble of initial states is needed. We argue that these results constitute a new foundation for quantum statistical mechanics.Comment: 28 pages in Plain TeX plus 2 uuencoded PS figures (included); minor corrections only, this version will be published in Phys. Rev. E; UCSB-TH-94-1

    Childhood Adversity Moderates Change in Latent Patterns of Psychological Adjustment during the COVID-19 Pandemic: Results of a Survey of U.S. Adults

    Get PDF
    Emerging evidence suggests that the consequences of childhood adversity impact later psychopathology by increasing individuals’ risk of experiencing difficulties in adjusting to stressful situations later in life. The goals of this study were to: (a) identify sociodemographic factors associated with subgroups of psychological adjustment prior to and after the onset of the COVID-19 pandemic and (b) examine whether and to what extent types of childhood adversity predict transition probabilities. Participants were recruited via multiple social media platforms and listservs. Data were collected via an internet-based survey. Our analyses reflect 1942 adults (M = 39.68 years); 39.8% reported experiencing at least one form of childhood adversity. Latent profile analyses (LPAs) and latent transition analyses (LTAs) were conducted to determine patterns of psychological adjustment and the effects of childhood adversity on transition probabilities over time. We identified five subgroups of psychological adjustment characterized by symptom severity level. Participants who were younger in age and those who endorsed marginalized identities exhibited poorer psychological adjustment during the pandemic. Childhood exposure to family and community violence and having basic needs met as a child (e.g., food, shelter) significantly moderated the relation between latent profile membership over time. Clinical and research implications are discussed

    Affleck-Dine dynamics and the dark sector of pangenesis

    Full text link
    Pangenesis is the mechanism for jointly producing the visible and dark matter asymmetries via Affleck-Dine dynamics in a baryon-symmetric universe. The baryon-symmetric feature means that the dark asymmetry cancels the visible baryon asymmetry and thus enforces a tight relationship between the visible and dark matter number densities. The purpose of this paper is to analyse the general dynamics of this scenario in more detail and to construct specific models. After reviewing the simple symmetry structure that underpins all baryon-symmetric models, we turn to a detailed analysis of the required Affleck-Dine dynamics. Both gravity-mediated and gauge-mediated supersymmetry breaking are considered, with the messenger scale left arbitrary in the latter, and the viable regions of parameter space are determined. In the gauge-mediated case where gravitinos are light and stable, the regime where they constitute a small fraction of the dark matter density is identified. We discuss the formation of Q-balls, and delineate various regimes in the parameter space of the Affleck-Dine potential with respect to their stability or lifetime and their decay modes. We outline the regions in which Q-ball formation and decay is consistent with successful pangenesis. Examples of viable dark sectors are presented, and constraints are derived from big bang nucleosynthesis, large scale structure formation and the Bullet cluster. Collider signatures and implications for direct dark matter detection experiments are briefly discussed. The following would constitute evidence for pangenesis: supersymmetry, GeV-scale dark matter mass(es) and a Z' boson with a significant invisible width into the dark sector.Comment: 51 pages, 7 figures; v2: minor modifications, comments and references added; v3: minor changes, matches published versio

    Scaling to the end of silicon with EDGE architectures

    Full text link
    corecore