57 research outputs found
Comments on Supergravity Description of S-branes
This is a note on the coupled supergravity-tachyon matter system, which has
been earlier proposed as a candidate for the effective space-time description
of S-branes. In particular, we study an ansatz with the maximal
ISO(p+1)xSO(8-p,1) symmetry, for general brane dimensionality p and homogeneous
brane distribution in transverse space \rho_\perp. A simple application of
singularity theorems shows that (for p \le 7) the most general solution with
these symmetries is always singular. (This invalidates a recent claim in the
literature.) We include a few general comments about the possibility of
describing the decay of unstable D-branes in purely gravitational terms.Comment: 19 pages, refs adde
Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations
Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible
to derive the direction of propagation of coronal mass ejections (CMEs) in
addition to their speed with a variety of methods. For CMEs observed by both
STEREO spacecraft, it is possible to derive their direction using simultaneous
observations from the twin spacecraft and also, using observations from only
one spacecraft with fitting methods. This makes it possible to test and compare
different analyses techniques. In this article, we propose a new fitting method
based on observations from one spacecraft, which we compare to the commonly
used fitting method of Sheeley et al. (1999). We also compare the results from
these two fitting methods with those from two stereoscopic methods, focusing on
12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009.
We find evidence that the fitting method of Sheeley et al. (1999) can result in
significant errors in the determination of the CME direction when the CME
propagates outside of 60deg \pm 20 deg from the Sun-spacecraft line. We expect
our new fitting method to be better adapted to the analysis of halo or limb
CMEs with respect to the observing spacecraft. We also find some evidence that
direct triangulation in the HI fields-of-view should only be applied to CMEs
propagating approximatively towards Earth (\pm 20deg from the Sun-Earth line).
Last, we address one of the possible sources of errors of fitting methods: the
assumption of radial propagation. Using stereoscopic methods, we find that at
least seven of the 12 studied CMEs had an heliospheric deflection of less than
20deg as they propagated in the HI fields-of-view, which, we believe, validates
this approximation.Comment: 17 pages, 6 figures, 2 tables, accepted to Solar Physic
Spontaneous Creation of Inflationary Universes and the Cosmic Landscape
We study some gravitational instanton solutions that offer a natural
realization of the spontaneous creation of inflationary universes in the brane
world context in string theory. Decoherence due to couplings of higher
(perturbative) modes of the metric as well as matter fields modifies the
Hartle-Hawking wavefunction for de Sitter space. Generalizing this new
wavefunction to be used in string theory, we propose a principle in string
theory that hopefully will lead us to the particular vacuum we live in, thus
avoiding the anthropic principle. As an illustration of this idea, we give a
phenomenological analysis of the probability of quantum tunneling to various
stringy vacua. We find that the preferred tunneling is to an inflationary
universe (like our early universe), not to a universe with a very small
cosmological constant (i.e., like today's universe) and not to a 10-dimensional
uncompactified de Sitter universe. Such preferred solutions are interesting as
they offer a cosmological mechanism for the stabilization of extra dimensions
during the inflationary epoch.Comment: 52 pages, 7 figures, 1 table. Added discussion on supercritical
string vacua, added reference
Regular S-Brane Backgrounds
We construct time-dependent S-brane solutions to the supergravity field
equations in various dimensions which (unlike most such geometries) do not
contain curvature singularities. The configurations we consider are less
symmetric than are earlier solutions, with our simplest solution being obtained
by a simple analytical continuation of the Kerr geometry. We discuss in detail
the global structure and properties of this background. We then generalize it
to higher dimensions and to include more complicated field configurations -
like non vanishing scalars and antisymmetric tensor gauge potentials - by the
usual artifice of applying duality symmetries.Comment: 22 pages, 3 figures. Typos in eq.(2.6) correcte
Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images
The Fixed-\Phi (F\Phi) and Harmonic Mean (HM) fitting methods are two methods
to determine the average direction and velocity of coronal mass ejections
(CMEs) from time-elongation tracks produced by Heliospheric Imagers (HIs), such
as the HIs onboard the STEREO spacecraft. Both methods assume a constant
velocity in their descriptions of the time-elongation profiles of CMEs, which
are used to fit the observed time-elongation data. Here, we analyze the effect
of aerodynamic drag on CMEs propagating through interplanetary space, and how
this drag affects the result of the F\Phi and HM fitting methods. A simple drag
model is used to analytically construct time-elongation profiles which are then
fitted with the two methods. It is found that higher angles and velocities give
rise to greater error in both methods, reaching errors in the direction of
propagation of up to 15 deg and 30 deg for the F\Phi and HM fitting methods,
respectively. This is due to the physical accelerations of the CMEs being
interpreted as geometrical accelerations by the fitting methods. Because of the
geometrical definition of the HM fitting method, it is affected by the
acceleration more greatly than the F\Phi fitting method. Overall, we find that
both techniques overestimate the initial (and final) velocity and direction for
fast CMEs propagating beyond 90 deg from the Sun-spacecraft line, meaning that
arrival times at 1 AU would be predicted early (by up to 12 hours). We also
find that the direction and arrival time of a wide and decelerating CME can be
better reproduced by the F\Phi due to the cancellation of two errors:
neglecting the CME width and neglecting the CME deceleration. Overall, the
inaccuracies of the two fitting methods are expected to play an important role
in the prediction of CME hit and arrival times as we head towards solar maximum
and the STEREO spacecraft further move behind the Sun.Comment: Solar Physics, Online First, 17 page
Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts
The NASA STEREO mission opened up the possibility to forecast the arrival
times, speeds and directions of solar transients from outside the Sun-Earth
line. In particular, we are interested in predicting potentially geo-effective
Interplanetary Coronal Mass Ejections (ICMEs) from observations of density
structures at large observation angles from the Sun (with the STEREO
Heliospheric Imager instrument). We contribute to this endeavor by deriving
analytical formulas concerning a geometric correction for the ICME speed and
arrival time for the technique introduced by Davies et al. (2012, ApJ, in
press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a
circle propagates outward, along a plane specified by a position angle (e.g.
the ecliptic), with constant angular half width (lambda). This is an extension
to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and
Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage
that it is possible to assess clearly, in contrast to previous models, if a
particular location in the heliosphere, such as a planet or spacecraft, might
be expected to be hit by the ICME front. Our correction formulas are especially
significant for glancing hits, where small differences in the direction greatly
influence the expected speeds (up to 100-200 km/s) and arrival times (up to two
days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the
geometric correction becomes very similar to the one derived by M\"ostl et al.
(2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic
expressions can also be used for empirical or analytical models to predict the
1 AU arrival time of an ICME by correcting for effects of hits by the flank
rather than the apex, if the width and direction of the ICME in a plane are
known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics
Clean Time-Dependent String Backgrounds from Bubble Baths
We consider the set of controlled time-dependent backgrounds of general
relativity and string theory describing ``bubbles of nothing'', obtained via
double analytic continuation of black hole solutions. We analyze their quantum
stability, uncover some novel features of their dynamics, identify their causal
structure and observables, and compute their particle production spectrum. We
present a general relation between squeezed states, such as those arising in
cosmological particle creation, and nonlocal theories on the string worldsheet.
The bubble backgrounds have various aspects in common with de Sitter space,
Rindler space, and moving mirror systems, but constitute controlled solutions
of general relativity and string theory with no external forces. They provide a
useful theoretical laboratory for studying issues of observables in systems
with cosmological horizons, particle creation, and time-dependent string
perturbation theory.Comment: 38 pages, harvmac big, 6 figure
Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation
We present a computational model and algorithm for detecting diffuse and specular interface reflections and some inter-reflections. Our color reflection model is based on the dichromatic model for dielectric materials and on a color space, called S space, formed with three orthogonal basis functions. We transform color pixels measured in RGB into the S space and analyze color variations on objects in terms of brightness, hue and saturation which are defined in the S space. When transforming the original RGB data into the S space, we discount the scene illumination color that is estimated using a white reference plate as an active probe. As a result, the color image appears as if the scene illumination is white. Under the whitened illumination, the interface reflection clusters in the S space are all aligned with the brightness direction. The brightness, hue and saturation values exhibit a more direct correspondence to body colors and to diffuse and specular interface reflections, shading, shadows and inter-reflections than the RGB coordinates. We exploit these relationships to segment the color image, and to separate specular and diffuse interface reflections and some inter-reflections from body reflections. The proposed algorithm is effications for uniformly colored dielectric surfaces under singly colored scene illumination. Experimental results conform to our model and algorithm within the liminations discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41303/1/11263_2004_Article_BF00128233.pd
Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008--2010: Lessons for Future Observations of Earth-Directed CMEs
We present a study of coronal mass ejections (CMEs) which impacted one of the
STEREO spacecraft between January 2008 and early 2010. We focus our study on 20
CMEs which were observed remotely by the Heliospheric Imagers (HIs) onboard the
other STEREO spacecraft up to large heliocentric distances. We compare the
predictions of the Fixed-Phi and Harmonic Mean (HM) fitting methods, which only
differ by the assumed geometry of the CME. It is possible to use these
techniques to determine from remote-sensing observations the CME direction of
propagation, arrival time and final speed which are compared to in situ
measurements. We find evidence that for large viewing angles, the HM fitting
method predicts the CME direction better. However, this may be due to the fact
that only wide CMEs can be successfully observed when the CME propagates more
than 100 deg from the observing spacecraft. Overall eight CMEs, originating
from behind the limb as seen by one of the STEREO spacecraft can be tracked and
their arrival time at the other STEREO spacecraft can be successfully
predicted. This includes CMEs, such as the events on 4 December 2009 and 9
April 2010, which were viewed 130 deg away from their direction of propagation.
Therefore, we predict that some Earth-directed CMEs will be observed by the HIs
until early 2013, when the separation between Earth and one of the STEREO
spacecraft will be similar to the separation of the two STEREO spacecraft in
2009--2010.Comment: 21 pages, accepted to Solar Physic
- …