1,669 research outputs found

    STATIC FOUR-DIMENSIONAL ABELIAN BLACK HOLES IN KALUZA-KLEIN THEORY

    Full text link
    Static, four-dimensional (4-d) black holes (BH's) in (4+n4+n)-d Kaluza-Klein (KK) theory with Abelian isometry and diagonal internal metric have at most one electric (QQ) and one magnetic (PP) charges, which can either come from the same U(1)U(1)-gauge field (corresponding to BH's in effective 5-d KK theory) or from different ones (corresponding to BH's with U(1)M×U(1)EU(1)_M\times U(1)_E isometry of an effective 6-d KK theory). In the latter case, explicit non-extreme solutions have the global space-time of Schwarzschild BH's, finite temperature, and non-zero entropy. In the extreme (supersymmetric) limit the singularity becomes null, the temperature saturates the upper bound TH=1/4πQPT_H=1/4\pi\sqrt{|QP|}, and entropy is zero. A class of KK BH's with constrained charge configurations, exhibiting a continuous electric-magnetic duality, are generated by global SO(n)SO(n) transformations on the above classes of the solutions.Comment: 11 pages, 2 Postscript figures. uses RevTeX and psfig.sty (for figs) paper and figs also at ftp://dept.physics.upenn.edu/pub/Cvetic/UPR-645-

    Thermodynamic and gravitational instability on hyperbolic spaces

    Get PDF
    We study the properties of anti--de Sitter black holes with a Gauss-Bonnet term for various horizon topologies (k=0, \pm 1) and for various dimensions, with emphasis on the less well understood k=-1 solution. We find that the zero temperature (and zero energy density) extremal states are the local minima of the energy for AdS black holes with hyperbolic event horizons. The hyperbolic AdS black hole may be stable thermodynamically if the background is defined by an extremal solution and the extremal entropy is non-negative. We also investigate the gravitational stability of AdS spacetimes of dimensions D>4 against linear perturbations and find that the extremal states are still the local minima of the energy. For a spherically symmetric AdS black hole solution, the gravitational potential is positive and bounded, with or without the Gauss-Bonnet type corrections, while, when k=-1, a small Gauss-Bonnet coupling, namely, \alpha << {l}^2 (where l is the curvature radius of AdS space), is found useful to keep the potential bounded from below, as required for stability of the extremal background.Comment: Shortened to match published (PRD) version, 18 pages, several eps figure

    B-Pol: Detecting Primordial Gravitational Waves Generated During Inflation

    Get PDF
    B-Pol is a medium-class space mission aimed at detecting the primordial gravitational waves generated during inflation through high accuracy measurements of the Cosmic Microwave Background (CMB) polarization. We discuss the scientific background, feasibility of the experiment, and implementation developed in response to the ESA Cosmic Vision 2015-2025 Call for Proposals.Comment: Experimental Astronomy - The original publication is available at http://www.springerlink.co

    Gravitational hedgehog, stringy hedgehog and stringy sphere

    Full text link
    We investigate the solutions of Einstein equations such that a hedgehog solution is matched to different exterior or interior solutions via a spherical shell. In the case where both the exterior and the interior regions are hedgehog solutions or one of them is flat, the resulting spherical shell becomes a stringy shell. We also consider more general matchings and see that in this case the shell deviates from its stringy character.Comment: 11 page

    Photon polarization in radiative B decays

    Full text link
    We study decay distributions in B -> K pi pi gamma, combining contributions from several overlapping resonances in a K pi pi mass range near 1400 MeV, (1^+) K_1(1400), (2^+) K^*_2(1430) and (1^-) K^*(1410). A method is proposed for using these distributions to determine a photon polarization parameter in the effective radiative weak Hamiltonian. This parameter is measured through an up-down asymmetry of the photon direction relative to the K pi pi decay plane. We calculate a dominant up-down asymmetry of 0.33 +- 0.05 from the K1(1400) resonance, which can be measured with about 10^8 B B-bar pairs, thus providing a new test for the Standard Model and a probe for some of its extensions.Comment: 22 pages, 3 figures, version to appear in Phys. Rev.

    Slowly rotating charged black holes in anti-de Sitter third order Lovelock gravity

    Full text link
    In this paper, we study slowly rotating black hole solutions in Lovelock gravity (n=3). These exact slowly rotating black hole solutions are obtained in uncharged and charged cases, respectively. Up to the linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the uncharged black holes get no corrections from rotation. In charged case, we compute magnetic dipole moment and gyromagnetic ratio of the black holes. It is shown that the gyromagnetic ratio keeps invariant after introducing the Gauss-Bonnet and third order Lovelock interactions.Comment: 14 pages, no figur

    Spinor Field in Bianchi type-I Universe: regular solutions

    Get PDF
    Self-consistent solutions to the nonlinear spinor field equations in General Relativity has been studied for the case of Bianchi type-I (B-I) space-time. It has been shown that, for some special type of nonliearity the model provides regular solution, but this singularity-free solutions are attained at the cost of broken dominant energy condition in Hawking-Penrose theorem. It has also been shown that the introduction of Λ\Lambda-term in the Lagrangian generates oscillations of the B-I model, which is not the case in absence of Λ\Lambda term. Moreover, for the linear spinor field, the Λ\Lambda term provides oscillatory solutions, those are regular everywhere, without violating dominant energy condition. Key words: Nonlinear spinor field (NLSF), Bianch type -I model (B-I), Λ\Lambda term PACS 98.80.C CosmologyComment: RevTex, 21 page

    Supersymmetry and the positron excess in cosmic rays

    Get PDF
    Recently the HEAT balloon experiment has confirmed an excess of high-energy positrons in cosmic rays. They could come from annihilation of dark matter in the galactic halo. We discuss expectations for the positron signal in cosmic rays from the lightest superpartner. The simplest interpretations are incompatible with the size and shape of the excess if the relic LSPs evolved from thermal equilbrium. Non-thermal histories can describe a sufficient positron rate. Reproducing the energy spectrum is more challenging, but perhaps possible. The resulting light superpartner spectrum is compatible with collider physics, the muon anomalous magnetic moment, Z-pole electroweak data, and other dark matter searches.Comment: 4 pages, 2 figures, references added, minor wording change

    Braneworld Cosmology in (Anti)--de Sitter Einstein--Gauss--Bonnet--Maxwell Gravity

    Get PDF
    Braneworld cosmology for a domain wall embedded in the charged (Anti)-de Sitter-Schwarzschildblack hole of the five--dimensional Einstein-Gauss-Bonnet-Maxwell theory is considered. The effective Friedmann equation for the brane is derived by introducing the necessary surface counterterms required for a well-defined variational principlein the Gauss--Bonnet theory and for the finiteness of the bulk space. The asymptotic dynamics of the brane cosmology is determined and it is found that solutions with vanishingly small spatial volume are unphysical. The finiteness of the bulk action is related to the vanishing of the effective cosmological constant on the brane. An analogy between the Friedmann equation and a generalized Cardy--Verlinde formula is drawn.Comment: LaTex file 28 pages, typos corrected, one reference is adde

    Nonparametric nonlinear model predictive control

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or databased technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multidimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC
    corecore