421 research outputs found

    US Office of Naval Research, Solid Mechanics Program Review

    No full text
    The purpose of this extended abstract is to provide an overview of activities relating to performance assessments. The work described is wide ranging and not intended to provide a detailed account of any particular approach

    Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 1. Effect of nickel loading and preparation conditions on catalyst properties

    Get PDF
    Nickel metal supported on HZSM-5 (zeolite) is a promising catalyst for lignin depolymerization. In this work, Ni/HZSM-5 catalysts were synthesized via deposition-precipitation (DP) and characterized. The effect of synthesis parameters; including nickel loading, DP time (synthesis contact time), and calcination temperature, on catalyst properties were studied. N2 and CO2 adsorption techniques were used to look at textural properties and confirmed the existence of lamellar species generated from DP. X-ray diffraction (XRD) confirmed that nickel metal was present on the support after reduction and passivation of the catalyst. Temperature programmed reduction showed that all the catalyst preparations were reducible at 733 K after 4 h, and that the DP method formed a mixture of Ni2+ species on the support. Transmission electron microscopy, XRD, and H2 chemisorption were used to determine approximate particle size and dispersion of nickel metal. From all the preparations, the 15 wt% Ni/HZSM-5 catalyst with long DP time (16 h) and low calcination temperature (673 K), exhibited the most favorable particle size (~5 nm) and dispersion (7%)

    Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 2. Catalytic hydrodeoxygenation reactions of lignin model compounds in organic and aqueous systems

    Get PDF
    Nickel metal supported on HZSM-5 (zeolite) is a promising catalyst for lignin depolymerization. In this work, the ability of catalysts prepared via deposition-precipitation (DP) to perform hydrodeoxygenation (HDO) on two lignin model compounds in organic and aqueous solvents was evaluated; guaiacol in dodecane and 2-phenoxy-1-phenylethanol (PPE) in aqueous solutions. All Ni/HZSM-5 catalysts were capable of guaiacol HDO into cyclohexane at 523 K. The role of the HZSM-5 acid sites was confirmed by comparison with Ni/SiO2 (inert support) which exhibited incomplete deoxygenation of guaiacol due to the inability to perform the cyclohexanol dehydration step. The catalyst prepared with 15 wt% Ni, a DP time of 16 h, and a calcination temperature of 673 K (Ni(15)/HZSM-5 DP16_Cal673), performed the guaiacol conversion with the greatest selectivity towards HDO products, with an intrinsic rate ratio (HDO rate to conversion rate) of 0.31, and 90% selectivity to cyclohexane. Catalytic activity and selectivity of Ni/HZSM-5 (15 wt%) in aqueous environments (water and 0.1 M NaOH solution) was confirmed using PPE reactions at 523 K. After 30 min reaction time in water, Ni/HZSM-5 exhibited ~100% conversion of PPE, and good yield of the desired products; ethylbenzene and phenol (~35% and 23% of initial carbon, respectively). Ni/HZSM-5 in NaOH solution resulted in significantly higher ring saturation compared to the Ni/HZSM-5 in water or the NaOH solution control

    Development of an integrated sacrificial sensor for damage detection and monitoring in composite materials and adhesively bonded joints

    Get PDF
    Quality assurance of adhesively bonded joints is of vital importance if their benefits are to be exploited across a wide range of industrial applications. A novel lightweight, low-cost, non-invasive embedded sacrificial sensor is proposed, capable of detecting damage within an adhesively bonded joint, which could also be used in a laminated composite structure. The sensor operation uses changes in electrical resistance, increasing as the sensing material area diminishes with damage progression. Initial tests prove the sensor concept by showing that the electrical resistance of the sensor increases proportionally with material removal, mimicking the sensor operation. Thermography is used to verify the current flow through the sensor and that any localised heating caused by the sensor is minimal. Short beam interlaminar shear strength tests show that embedding sensors in a composite laminates did not cause a reduction in material interfacial structural performance. Finally, the in-situ performance of the sensor is demonstrated in quasi-static tensile tests to failure of adhesively bonded Single Lap Joints (SLJs) with sensors embedded in the bond line. Prior to crack initiation an electrical response occurs that correlates with increasing applied load, suggesting scope for secondary uses of the sensor for load monitoring and cycle counting. Crack initiation is accompanied by a rapid increase in electrical resistance, providing an indication of failure ahead of crack propagation and an opportunity for timely repair. As the crack damage propagated, the electrical response of the sensor increased proportionally. The effect of the sensor on the overall structural performance was assessed by comparing the failure load of joints with and without the embedded sensor with no measurable difference in ultimate strength. The research presented in the paper serves as an important first step in developing a simple yet promising new technology for structural health monitoring with numerous potential applications

    Lock-in thermography using miniature infra-red cameras and integrated actuators for defect identification in composite materials

    Get PDF
    A novel approach for thermographic Non-Destructive Evaluation (NDE) of laminated polymer composite structures is presented. The technique is based on Lock-In Thermography (LIT), which traditionally uses an external heat source. Here a new means of internal heating, via a lightweight embedded actuator capable of providing highly repeatable and uniform heating is presented. The equipment cost, complexity and hence size is reduced by removing the need for high power external thermal excitation. Instead, the necessary temperature modulation of the internal actuator is achieved with a compact and low-cost Arduino controlled circuit. The size and cost of the equipment is further reduced by demonstrating that a miniature printed circuit board mounted thermal core type micro-bolometer can be used effectively for LIT. The performance of the thermal core is quantitatively compared with the more expensive and bulky traditional infra-red cameras. It is shown that the thermal core can detect defects with similar overall performance as a cooled photon detector and an uncooled micro-bolometer. The low-cost, compact nature and small mass of the thermal core offers great potential in thermographic inspection opening the possibility of deploying devices permanently on structures in conjunction with the embedded actuators for in-situ monitoring in the service environment

    Some extremal functions in Fourier analysis, III

    Full text link
    We obtain the best approximation in L1(R)L^1(\R), by entire functions of exponential type, for a class of even functions that includes eâˆ’Î»âˆŁx∣e^{-\lambda|x|}, where λ>0\lambda >0, log⁥∣x∣\log |x| and ∣x∣α|x|^{\alpha}, where −1<α<1-1 < \alpha < 1. We also give periodic versions of these results where the approximating functions are trigonometric polynomials of bounded degree.Comment: 26 pages. Submitte

    Bandlimited approximations to the truncated Gaussian and applications

    Full text link
    In this paper we extend the theory of optimal approximations of functions f:R→Rf: \R \to \R in the L1(R)L^1(\R)-metric by entire functions of prescribed exponential type (bandlimited functions). We solve this problem for the truncated and the odd Gaussians using explicit integral representations and fine properties of truncated theta functions obtained via the maximum principle for the heat operator. As applications, we recover most of the previously known examples in the literature and further extend the class of truncated and odd functions for which this extremal problem can be solved, by integration on the free parameter and the use of tempered distribution arguments. This is the counterpart of the work \cite{CLV}, where the case of even functions is treated.Comment: to appear in Const. Appro

    Zeta function method and repulsive Casimir forces for an unusual pair of plates at finite temperature

    Full text link
    We apply the generalized zeta function method to compute the Casimir energy and pressure between an unusual pair of parallel plates at finite temperature, namely: a perfectly conducting plate and an infinitely permeable one. The high and low temperature limits of these quantities are discussed; relationships between high and low temperature limits are estabkished by means of a modified version of the temperature inversion symmetry.Comment: latex file 9 pages, 3 figure
    • 

    corecore