1,272 research outputs found

    A rapid screening, “combinatorial-type” survey of the metalloligand chemistry of Pt₂(PPh₃)₄(μ-S)₂ using electrospray mass spectrometry

    Get PDF
    Electrospray mass spectrometry is a rapid and powerful technique for a combinatorial-like survey of the chemistry of the metalloligand Pt₂(PPh₃)₄(μ-S)₂, leading to the successful isolation and crystallographic characterisation of the novel protonated species Pt₂(PPh₃)₄(μ-S)(μ-SH) together with a range of metallated derivatives

    The Growth of Black Holes and Bulges at the Cores of Cooling Flows

    Get PDF
    Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows that exceed those in powerful quasars. We show that the resulting bulge and black hole growth follows a trend that is roughly consistent with the slope of the local (Magorrian) relation between bulge and black hole mass for nearby quiescent ellipticals. However, a large scatter suggests that cD bulges and black holes do not always grow in lock-step. New measurements made with XMM, Chandra, and FUSE of the condensation rates in cooling flows are now approaching or are comparable to the star formation rates, alleviating the need for an invisible sink of cold matter. We show that the remaining radiation losses can be offset by AGN outbursts in more than half of the systems in our sample, indicating that the level of cooling and star formation is regulated by AGN feedback.Comment: 3 pages, 4 figures, to appear in the proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies," edited by H. Boehringer, P. Schuecker, G. W. Pratt, and A. Finogueno

    Maximally Symmetric Spin-Two Bitensors on S3S^3 and H3H^3

    Full text link
    The transverse traceless spin-two tensor harmonics on S3S^3 and H3H^3 may be denoted by T(kl)abT^{(kl)}{}_{ab}. The index kk labels the (degenerate) eigenvalues of the Laplacian \square and ll the other indices. We compute the bitensor lT(kl)ab(x)T(kl)ab(x)\sum_l T^{(kl)}{}_{ab}(x) T^{(kl)}{}_{a'b'}(x')^* where x,xx,x' are distinct points on a sphere or hyperboloid of unit radius. These quantities may be used to find the correlation function of a stochastic background of gravitational waves in spatially open or closed Friedman-Robertson-Walker cosmologies.Comment: 12 pages, RevTeX, uuencoded compressed .tex file, minor typos correcte

    Green's function for the Hodge Laplacian on some classes of Riemannian and Lorentzian symmetric spaces

    Full text link
    We compute the Green's function for the Hodge Laplacian on the symmetric spaces M\times\Sigma, where M is a simply connected n-dimensional Riemannian or Lorentzian manifold of constant curvature and \Sigma is a simply connected Riemannian surface of constant curvature. Our approach is based on a generalization to the case of differential forms of the method of spherical means and on the use of Riesz distributions on manifolds. The radial part of the Green's function is governed by a fourth order analogue of the Heun equation.Comment: 18 page

    Searching for galaxy clusters in the VST-KiDS Survey

    Get PDF
    We present the methods and first results of the search for galaxy clusters in the Kilo Degree Survey (KiDS). The adopted algorithm and the criterium for selecting the member galaxies are illustrated. Here we report the preliminary results obtained over a small area (7 sq. degrees), and the comparison of our cluster candidates with those found in the RedMapper and SZ Planck catalogues; the analysis to a larger area (148 sq. degrees) is currently in progress. By the KiDS cluster search, we expect to increase the completeness of the clusters catalogue to z = 0.6-0.7 compared to RedMapper.Comment: 5 pages, 4 figures, to be published in the Proceedings of the Conference "The Universe of Digital Sky Surveys", Naples, November 25-28 201

    Gravity Waves from Instantons

    Full text link
    We perform a first principles computation of the spectrum of gravity waves produced in open inflationary universes. The background spacetime is taken to be the continuation of an instanton saddle point of the Euclidean no boundary path integral. The two-point tensor correlator is computed directly from the path integral and is shown to be unique and well behaved in the infrared. We discuss the tensor contribution to the cosmic microwave background anisotropy and show how it may provide an observational discriminant between different types of primordial instantons.Comment: 19 pages, RevTex file, including two postscript figure file

    Gravitational Waves in Open de Sitter Space

    Get PDF
    We compute the spectrum of primordial gravitational wave perturbations in open de Sitter spacetime. The background spacetime is taken to be the continuation of an O(5) symmetric instanton saddle point of the Euclidean no boundary path integral. The two-point tensor fluctuations are computed directly from the Euclidean path integral. The Euclidean correlator is then analytically continued into the Lorentzian region where it describes the quantum mechanical vacuum fluctuations of the graviton field. Unlike the results of earlier work, the correlator is shown to be unique and well behaved in the infrared. We show that the infrared divergence found in previous calculations is due to the contribution of a discrete gauge mode inadvertently included in the spectrum.Comment: 17 pages, compressed and RevTex file, including one postscript figure fil

    A Model of Curvature-Induced Phase Transitions in Inflationary Universe

    Get PDF
    Chiral phase transitions driven by space-time curvature effects are investigated in de Sitter space in the supersymmetric Nambu-Jona-Lasinio model with soft supersymmetry breaking. The model is considered to be suitable for the analysis of possible phase transitions in inflationary universe. It is found that a restoration of the broken chiral symmetry takes place in two patterns for increasing curvature : the first order and second order phase transition respectively depending on initial settings of the four-body interaction parameter and the soft supersymmetry breaking parameter. The critical curves expressing the phase boundaries in these parameters are obtained. Cosmological implications of the result are discussed in connection with bubble formations and the creation of cosmic strings during the inflationary era.Comment: 12 pages, 3 figures, REVTe

    Thermal partition function of photons and gravitons in a Rindler wedge

    Get PDF
    The thermal partition function of photons in any covariant gauge and gravitons in the harmonic gauge, propagating in a Rindler wedge, are computed using a local ζ\zeta-function regularization approach. The correct Planckian leading order temperature dependence T4T^4 is obtained in both cases. For the photons, the existence of a surface term giving a negative contribution to the entropy is confirmed, as earlier obtained by Kabat, but this term is shown to be gauge dependent in the four-dimensional case and, therefore is discarded. It is argued that similar terms could appear dealing with any integer spin s1s\geq 1 in the massless case and in more general manifolds. Our conjecture is checked in the case of a graviton in the harmonic gauge, where different surface terms also appear, and physically consistent results arise dropping these terms. The results are discussed in relation to the quantum corrections to the black hole entropy.Comment: 29 pages, RevTeX, no figures. Minor errors corrected and a few comments changed since first submission. To be published on Phys.Rev.

    Do primordial Lithium abundances imply there's no Dark Energy?

    Full text link
    Explaining the well established observation that the expansion rate of the universe is apparently accelerating is one of the defining scientific problems of our age. Within the standard model of cosmology, the repulsive 'dark energy' supposedly responsible has no explanation at a fundamental level, despite many varied attempts. A further important dilemma in the standard model is the Lithium problem, which is the substantial mismatch between the theoretical prediction for 7-Li from Big Bang Nucleosynthesis and the value that we observe today. This observation is one of the very few we have from along our past worldline as opposed to our past lightcone. By releasing the untested assumption that the universe is homogeneous on very large scales, both apparent acceleration and the Lithium problem can be easily accounted for as different aspects of cosmic inhomogeneity, without causing problems for other cosmological phenomena such as the cosmic microwave background. We illustrate this in the context of a void model.Comment: 14 pages, 4 figures. v2: minor rearrangements in the text, comments and references expanded, results unchange
    corecore